Red-emitting CDs was synthesized via a one-step solvothermal method with 1,2,4,5-benzenetetramine tetrahydrochloride as a novel carbon source and ethanol as a solvent. The luminescence mechanism of CDs was studied by MCI gel column chromatography.
This paper reports the synthesis of high-quality green-emission carbon dots based on the synergistic effect between the deactivator (polyethyleneimine) and the reducing reagent (citric acid).
The concept of synergistic effects has been widely applied in many scientific fields such as in biomedical science and material chemistry, and has further attracted interest in the fields of both synthesis and application of nanomaterials. In this paper, we report the synthesis of long-wavelength emitting silicon quantum dots based on a one-step hydrothermal route with catechol (CC) and sodium citrate (Na-citrate) as a reducing agent pair, and N-[3-(trimethoxysilyl)propyl]ethylenediamine (DAMO) as silicon source. By controlling the reaction time, yellow-emitting silicon quantum dots and green-emitting silicon quantum dots were synthesized with quantum yields (QYs) of 29.4% and 38.3% respectively. The as-prepared silicon quantum dots were characterized by fluorescence (PL) spectrum, UV–visible spectrum, high resolution transmission electron microscope (HRTEM), Fourier transform infrared (FT-IR) spectrometry energy dispersive spectroscopy (EDS), and Zeta potential. With the aid of these methods, this paper further discussed how the optical performance and surface characteristics of the prepared quantum dots (QDs) influence the fluorescence mechanism. Meanwhile, the cell toxicity of the silicon quantum dots was tested by the 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium (MTT) bromide method, and its potential as a fluorescence ink explored. The silicon quantum dots exhibit a red-shift phenomenon in their fluorescence peak due to the participation of the carbonyl group during the synthesis. The high-efficiency and stable photoluminescence of the long-wavelength emitting silicon quantum dots prepared through a synergistic effect is of great value in their future application as novel optical materials in bioimaging, LED, and materials detection.
Novel water-soluble CdSe quantum dots (QDs) have been prepared withN-acetyl-L-cysteine as new stabilizer through a one-step hydrothermal route. The influence of experimental conditions, including reaction time, molar ratio of reactants, and pH value, on the luminescent properties of the obtained CdSe QDs has been systematically investigated. The characterization of as-prepared QDs was carried out through different methods. In particular, we realized qualitative and semiquantitative studies on CdSe QDs through X-ray photoelectron spectroscopy and electron diffraction spectroscopy. The results show that the as-prepared CdSe QDs exhibit a high quantum yield (up to 26.7%), high stability, and monodispersity and might be widely used in biochemical detection and biochemical research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.