A delayed SEIRS epidemic model with pulse vaccination and nonlinear incidence rate is proposed. We analyze the dynamical behaviors of this model and point out that there exists an infection-free periodic solution which is globally attractive ifR1<1,R2>1, and the disease is permanent. Our results indicate that a short period of pulse or a large pulse vaccination rate is the sufficient condition for the eradication of the disease. The main feature of this paper is to introduce time delay and impulse into SEIRS model and give pulse vaccination strategies.
A prey-predator model with Beddington-DeAngelis functional response and impulsive state feedback control is investigated. We obtain the sufficient conditions of the global asymptotical stability of the system without impulsive effects. By using the geometry theory of semicontinuous dynamic system and the method of successor function, we obtain the system with impulsive effects that has an order one periodic solution, and sufficient conditions for existence and stability of order one periodic solution are also obtained. Finally, numerical simulations are performed to illustrate our main results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.