Nonalcoholic fatty liver disease (NAFLD) results from an abnormal accumulation of lipids within hepatocytes, and is commonly associated with obesity, insulin resistance, and hyperlipidemia. Metformin is commonly used to treat type 2 diabetes mellitus and, in recent years, it was found to play a potential role in the amelioration of NAFLD. However, the mechanisms underlying the protective effect of metformin against NAFLD remain largely unknown. Transcription factor EB (TFEB) is a master transcriptional regulator of lysosomal biogenesis and autophagy and, when activated, is effective against disorders of lipid metabolism. However, the role of TFEB in hepatic steatosis is not well understood. In this report, we demonstrate that the activity of TFEB is reduced in the liver of mice fed a high-fat diet. Metformin treatment significantly reverses the activity of TFEB, and the protective effect of metformin against hepatic steatosis and insulin resistance is dependent on TFEB. We show that metformin-induced autophagy is regulated by TFEB, and our findings reveal that TFEB acts as a mediator, linking metformin with autophagy to reverse NAFLD, and highlight that TFEB may be a promising molecular target for the treatment of NAFLD.
Fenofibrate is widely used in clinical therapy to effectively ameliorate the development of non-alcoholic fatty liver disease (NAFLD); however, its specific molecular mechanism of action remains largely unknown. MicroRNAs (miRNAs) are key mediators in regulating endoplasmic reticulum (ER) stress during NAFLD, and the deregulation of miRNAs has been demonstrated in NAFLD pathophysiology. The present study aimed to identify whether fenofibrate could influence miRNA expression in NAFLD and investigate the specific mechanism of action of fenofibrate in lipid metabolism disorder-associated diseases. We found that fenofibrate alleviated ER stress and increased the levels of SERCA2b, which serves as a regulator of ER stress. Additionally, the levels of let-7 miRNA were regulated by fenofibrate; let-7 was found to target the 3′ untranslated region of SERCA2b. The present data suggest that the protective effects of fenofibrate against insulin resistance and its suppressive activity against excessive hepatic lipid accumulation may be related to the alteration of the let-7/SERCA2b axis and alleviation of ER stress.
Background: Fenofibrate is a peroxisome proliferator-activated receptor alpha agonist, which is widely used in clinical practice to effectively ameliorates the development of NAFLD. However, the molecular mechanism remains largely unknown, the present study aimed to investigate the role and specific mechanism of fenofibrate on lipid metabolism disorders associated diseases.Methods: The male C57BL6/J mice were divided into 3 groups, the mice in control group (n=10) were fed with normal chow diet, and the mice in HFD-fed group (n =10) were fed with a high fat diet (HFD) for 14 weeks. For the fenofibrate +HFD-fed group (n =10), the mice fed HFD were orally gavaged with fenofibrate (40 mg/kg) daily for the last 4 weeks. Body weight and hip width were measured. Macrosteatosis and fat deposition in the liver were measured by H&E staining and Oil red O staining individually. The levels of serum and hepatic triglyceride were measured, and HOMA-IR, HOMA-ISI were analyzed. The levels of SCD-1, Bip, CHOP and SERCA2b were measured by western blotting. The expression of let-7 were analyzed by qPCR, and the complementarity between the 3′-UTR of SERCA2b gene and let-7 was measured by luciferase reporter assay.Results: Fenofibrate reduces hepatic steatosis and insulin resistance in HFD-fed mice. Fnofibrate alleviates endoplasmic reticulum stress (ER stress) of mice fed a high fat diet (HFD). Fenofibrate increases the levels of Sarco-endoplasmic reticulum Ca2+-ATPase 2b (SERCA2b) which serves as a regulator of ER stress. Further, the levels of let-7 microRNA is also regulated by fenofibrate, and let-7 directly targets 3’-UTR of SERCA2b. Conclusion: The present data suggests that fenofibrate alleviates ER stress through the let-7/SERCA2b axis to protect against excessive lipid accumulation in the liver of Non-alcoholic fatty liver disease (NAFLD) mice.
Abstract:Objective: To explore potential functional biomarkers in diabetes mellitus (DM) by utilizing gene pathway cross-talk. Methods: Firstly, potential disrupted pathways that were enriched by differentially expressed genes (DEGs) were identified based on biological pathways downloaded from the Ingenuity Pathways Analysis (IPA) database. In addition, we quantified the pathway crosstalk for each pair of pathways based on Discriminating Score (DS). Random forest (RF) classification was then employed to find the top 10 pairs of pathways with a high area under the curve (AUC) value between DM samples versus normal samples based on 10-fold cross-validation. Finally, a Monte Carlo Cross-Validation was applied to demonstrate the identified pairs of pathways by a mutual information analysis. Results: A total of 247 DEGs in normal and disease samples were identified. Based on the F-test, 50 disrupted pathways were obtained with false discovery rate (FDR) < 0.01. Simultaneously, after calculating the DS, the top 10 pairs of pathways were selected based on a higher AUC value as measured by RF classification. From the Monte Carlo Cross-Validation, we considered the top 10 pairs of pathways with higher AUC values ranked for all 50 bootstraps as the most frequently detected ones. Conclusion: The pairs of pathways identified in our study might be key regulators in DM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.