Diabetic nephropathy (DN), a severe microvascular complication of diabetes mellitus (DM), is the most common form of chronic kidney disease (CKD) and a leading cause of renal failure in end-stage renal disease. No currently available treatment can achieve complete cure. Traditional treatments have many limitations, such as painful subcutaneous insulin injections, nephrotoxicity and hepatotoxicity with oral medication, and poor patient compliance with continual medication intake. Given the known drawbacks, recent research has suggested that nanoparticle-based drug delivery platforms as therapeutics may provide a promising strategy for treating debilitating diseases such as DN in the future. This administration method provides multiple advantages, such as delivering the loaded drug to the precise target of action and enabling early prevention of CKD progression. This article discusses the development of the main currently used nanoplatforms, such as liposomes, polymeric NPs, and inorganic NPs, as well as the prospects and drawbacks of nanoplatform application in the treatment of CKD.
Purpose
Owing to the complexity of cancer, a synergistic combination of chemotherapy and gene therapy can be a promising therapeutic strategy. This study aimed to use stem cell membrane (SCM)-camouflaged polydopamine nanoparticles for simultaneous delivery of curcumin (CUR) and siRNA-targeting STAT3 (CPDA/siSTAT3@SCM NPs) for osteosarcoma (OS).
Methods
Transmission electron microscopy, UV–Vis absorbance spectra, zeta potential, cell co-localization, and Coomassie bright blue staining were used to characterize CPDA/siSTAT3@SCM NPs constructed by the self-assembly method. Drug release, cellular uptake, cell proliferation, apoptosis, wound healing, and transwell assays were evaluated in vitro. The expression levels of epithelial–mesenchymal transition (EMT)- and apoptosis-related proteins were measured by western blotting. Furthermore, the biodistribution, antitumor efficacy, and biosafety of CPDA/siSTAT3@SCM NPs in an MG63 xenograft mouse model were evaluated.
Results
CPDA/siSTAT3@SCM NPs were successfully synthesized to deliver CUR and siRNA simultaneously, and they showed osteosarcoma-targeting ability. Furthermore, it showed high cellular uptake and excellent synergistic antitumor effects in vitro. CPDA/siSTAT3@SCM NPs suppressed OS cell proliferation, migration, invasion, and EMT progression, and promoted the apoptotic process. In tumor-bearing mice, the treatment with CPDA/siSTAT3@SCM NPs showed an excellent antitumor effect with no side effects in major organs.
Conclusion
This study revealed that CPDA/siSTAT3@SCM NPs can target drug delivery by biomimetic multifunctional nanoparticles to treat OS through chemo-gene combined therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.