There is growing interest in designing and developing high dielectric constant (ε r ) organic semiconductors because they have the potential to further enhance device performance by promoting exciton dissociation, reducing bimolecular charge carrier recombination, and potentially enhancing charge carrier mobility via charge screening. In this study, a new class of semiconducting polymers with high ε r , i.e., sulfinylated and sulfonylated poly(3-alkylthiophene)s (P3ATs), were synthesized. Because of efficient rotation of highly polar methylsulfinyl and methylsulfonyl side groups (i.e., orientational polarization), high ε r values were achieved for these functionalized P3ATs based on an accurate capacitance measurement using a gold/ semiconducting polymer/SiO 2 /n-doped Si configuration. For example, the ε r at megahertz and room temperature increased from 3.75 for the regioregular poly(3-hexylthiophene) (P3HT) to 7.4 for the sulfinylated and 8.1−9.3 for sulfonylated P3AT polymers. These values are among the highest ε r reported for conjugated polymers so far. Grazing-incident wide-angle X-ray diffraction results showed that these polar groups decreased the crystallinity for the polythiophene backbones and interfered with the π−π stacking in the crystalline structure. Consequently, their optical properties, including UV−vis absorption and fluorescence, changed in thin films. From this study, the sulfinylated polymer may be promising to provide a balance between high ε r and preserving favorable polythiophene π−π stacking structure for device applications.
In the respiratory tract and lung tissue, a balanced physiological response is essential for Actinobacillus pleuropneumoniae to survive various types of challenges. ClpP, the catalytic core of the Clp proteolytic complex, is involved in various stresses response and regulation of biofilm formation in many pathogenic bacteria. To investigate the role of ClpP in the virulence of A. pleuropneumoniae, the clpP gene was deleted by homologous recombination, resulting in the mutant strain S8ΔclpP. The reduced growth of S8ΔclpP mutant at high temperatures and under several other stress conditions suggests that the ClpP protein is required for the stress tolerance of A. pleuropneumoniae. Interestingly, we observed that the S8ΔclpP mutant exhibited an increased ability to take up iron in vitro compared to the wild-type strain. We also found that the cells without ClpP displayed rough and irregular surfaces and increased cell volume relative to the wild-type strain using scanning electron microscopy (SEM). Confocal laser scanning microscopy (CLSM) revealed that the S8ΔclpP mutant showed decreased biofilm formation compared to the wild-type strain. We examined the transcriptional profiles of the wild type S8 and the S8ΔclpP mutant strains of A. pleuropneumoniae using RNA sequencing. Our analysis revealed that the expression of 16 genes was changed by the deletion of the clpP gene. The data presented in this study illustrate the important role of ClpP protease in the stress response, iron acquisition, cell morphology and biofilm formation related to A. pleuropneumoniae and further suggest a putative role of ClpP protease in virulence regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.