We theoretically analyze the impact of angular selectivity on the radiative cooling performance of thermal emitters. We investigate the effect of spectral selectivity, environmental conditions, and parasitic heating on the minimum possible equilibrium temperature of the thermal emitter. We show that combining angular and spectral selectivity is necessary to reach deep subfreezing temperatures. We also show that angularly selective thermal emitters increase the cooling performance in humid environments, however, they require management of nonradiative heat transfer processes. We introduce a general scheme to realize angularly and spectrally selective absorption/emission using a thin film stack consisting of an angle dependent transmission filter overlayed on a selective thermal emitter. The thermal emitter total thickness is ∼16 μm, an order of magnitude less than previously proposed angular selective thermal emitters/absorbers and operates under s- and p-polarized light without using anisotropic layers. Under realistic conditions and reasonable parasitic heating, the proposed emitter can be cooled down to ΔT = −46 °C below ambient temperature. Our work highlights the advantages and drawbacks of angular selective thermal emitters towards practical and efficient radiative cooling devices.
Structural coloring is a photostable and environmentally friendly coloring approach that harnesses optical interference and Nanophotonic resonances to obtain colors with a range of applications including display technologies, colorful solar panels, steganography, décor, data storage, and anticounterfeiting measures. We show that optical coatings exhibiting the photonic Fano Resonance present an ideal platform for structural coloring- they provide full color access, high color purity, high brightness, controlled iridescence, and scalable manufacturing. We show that an additional oxide film deposited on Fano resonant optical coatings (FROCs) increases the color purity (up to 97%) and color gamut coverage range (> 99% coverage of the sRGB and Adobe color spaces). For coloring applications that do not require high spatial resolution, FROCs have a significant advantage over existing structural coloring schemes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.