Semantic parsing is challenging due to the structure gap and the semantic gap between utterances and logical forms. In this paper, we propose an unsupervised semantic parsing method -Synchronous Semantic Decoding (SSD), which can simultaneously resolve the semantic gap and the structure gap by jointly leveraging paraphrasing and grammarconstrained decoding. Specifically, we reformulate semantic parsing as a constrained paraphrasing problem: given an utterance, our model synchronously generates its canonical utterance 1 and meaning representation. During synchronous decoding: the utterance paraphrasing is constrained by the structure of the logical form, therefore the canonical utterance can be paraphrased controlledly; the semantic decoding is guided by the semantics of the canonical utterance, therefore its logical form can be generated unsupervisedly. Experimental results show that SSD is a promising approach and can achieve competitive unsupervised semantic parsing performance on multiple datasets. * Corresponding Author 1 Canonical utterances are pseudo-language representations of logical forms, which have the synchronous structure of logical forms.
Dialogue understanding has always been a bottleneck for many conversational tasks, such as dialogue response generation and conversational question answering. To expedite the progress in this area, we introduce the task of conversational aspect sentiment analysis (CASA) that can provide useful fine-grained sentiment information for dialogue understanding and planning. Overall, this task extends the standard aspect-based sentiment analysis to the conversational scenario with several major adaptations. To aid the training and evaluation of data-driven methods, we annotate 3,000 chit-chat dialogues (27,198 sentences) with fine-grained sentiment information, including all sentiment expressions, their polarities and the corresponding target mentions. We also annotate an out-of-domain test set of 200 dialogues for robustness evaluation. Besides, we develop multiple baselines based on either pretrained BERT or self-attention for preliminary study. Experimental results show that our BERT-based model has strong performances for both in-domain and out-of-domain datasets, and thorough analysis indicates several potential directions for further improvements.
Dialogue rewriting aims to transform multi-turn, context-dependent dialogues into well-formed, context-independent text for most NLP systems. Previous dialogue rewriting benchmarks and systems assume a fluent and informative utterance to rewrite. Unfortunately, dialogue utterances from real-world systems are frequently noisy and with various kinds of errors that can make them almost uninformative. In this paper, we first present Real-world Dialogue Rewriting Corpus (RealDia), a new benchmark to evaluate how well current dialogue rewriting systems can deal with real-world noisy and uninformative dialogue utterances. RealDia contains annotated multi-turn dialogues from real scenes with ASR errors, spelling errors, redundancies and other noises that are ignored by previous dialogue rewriting benchmarks. We show that previous dialogue rewriting approaches are neither effective nor data-efficient to resolve RealDia. Then this paper presents Skeleton-Guided Rewriter (SGR), which can resolve the task of dialogue rewriting via a skeleton-guided generation paradigm. Experiments show that RealDia is a much more challenging benchmark for real-world dialogue rewriting, and SGR can effectively resolve the task and outperform previous approaches by a large margin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.