In order to solve the problems of single movement pattern recognition information and low recognition accuracy of multi-joint upper limb exoskeleton rehabilitation training, a multimodal information fusion method with human surface electromyography(sEMG) and electrocardiogram(ECG) was proposed, and an Inception-Sim model for upper limb motion pattern recognition was designed. Integrating the advantages of multimodal information, inspired by the convolutional neural network processing image classification problem, the original signal was converted into a Gramian Angular Summation/Difference Fields-Histogram of Oriented Gradient (GASF/GADF-HOG) image based on the principle of Grameen angle superposition/difference field, and the directional gradient histogram feature of the GASF/GADF image was extracted. The Inception-Sim model was constructed based on the Inception V3 model, and the human motion pattern recognition was completed on the basis of the transfer learning network. VGG16, ResNet-50, and other backbone networks were selected as comparison models. The recognition accuracy of each motion pattern for all participants reaches up to 90%, which is better than that of the control model. The average iteration speed of the proposed Inception-Sim model improved by about 21% compared to the control model. The experimental results show that the proposed multimodal information fusion recognition method can improve the accuracy and iteration speed of upper limb motion recognition mode and then improve the effect of upper limb rehabilitation training.
In this paper, a spatial adaptive strategy for End-hopping systems is proposed, based on the study of attack-defense models. It has been conceived as a combination of adaptive and End-hopping technologies. Modules such as attack detection, feedback transmission and adaptive control are added to the original End-hopping system model. Then, guidance is put forward for next hop with the help of real-time evaluation on each hopping node. Furthermore, investigations are provided on how to adjust related parameters automatically, according to the network communication status and the degree according to which the nodes are attacked. The new system can maintain good service efficiency as well as high security. This technique is applied to the End-hopping prototype system. By presenting different attack experiments on a prototype system, the feasibility and effectiveness of such End-hopping technique are shown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.