Background and Purpose: Accurate prediction of functional outcome after stroke would provide evidence for reasonable post-stroke management. This study aimed to develop a machine learning-based prediction model for 6-month unfavorable functional outcome in Chinese acute ischemic stroke (AIS) patient. Methods: We collected AIS patients at National Advanced Stroke Center of Nanjing First Hospital (China) between September 2016 and March 2019. The unfavorable outcome was defined as modified Rankin Scale score (mRS) 3-6 at 6-month. We developed five machine-learning models (logistic regression, support vector machine, random forest classifier, extreme gradient boosting, and fully-connected deep neural network) and assessed the discriminative performance by the area under the receiver-operating characteristic curve. We also compared them to the Houston Intra-arterial Recanalization Therapy (HIAT) score, the Totaled Health Risks in Vascular Events (THRIVE) score, and the NADE nomogram. Results: A total of 1,735 patients were included into this study, and 541 (31.2%) of them had unfavorable outcomes. Incorporating age, National Institutes of Health Stroke Scale score at admission, premorbid mRS, fasting blood glucose, and creatinine, there were similar predictive performance between our machine-learning models, while they are significantly better than HIAT score, THRIVE score, and NADE nomogram. Conclusions: Compared with the HIAT score, the THRIVE score, and the NADE nomogram, the RFC model can improve the prediction of 6-month outcome in Chinese AIS patients.
Background and purposeFutile recanalization occurs in a significant proportion of patients with basilar artery occlusion (BAO) after endovascular thrombectomy (EVT). Therefore, our goal was to develop a visualized nomogram model to early identify patients with BAO who would be at high risk of futile recanalization, more importantly, to aid neurologists in selecting the most appropriate candidates for EVT.MethodsPatients with BAO with EVT and the Thrombolysis in Cerebral Infarction score of ≥2b were included in the National Advanced Stroke Center of Nanjing First Hospital (China) from October 2016 to June 2021. The exclusion criteria were lacking the 3-month Modified Rankin Scale (mRS), age <18 years, the premorbid mRS score >2, and unavailable baseline CT imaging. Potential predictors were selected for the construction of the nomogram model and the predictive and calibration capabilities of the model were assessed.ResultsA total of 84 patients with BAO were finally enrolled in this study, and patients with futile recanalization accounted for 50.0% (42). The area under the curve (AUC) of the nomogram model was 0.866 (95% CI, 0.786–0.946). The mean squared error, an indicator of the calibration ability of our prediction model, was 0.025. A web-based nomogram model for broader and easier access by clinicians is available online at https://trend.shinyapps.io/DynNomapp/.ConclusionWe constructed a visualized nomogram model to accurately and online predict the risk of futile recanalization for patients with BAO, as well as assist in the selection of appropriate candidates for EVT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.