This article presents a fixed-time active disturbance rejection control approach for the attitude control problem of quadrotor unmanned aerial vehicle in the presence of dynamic wind, mass eccentricity and an actuator fault. The control scheme applies the feedback linearization technique and enhances the performance of the traditional active disturbance rejection control (ADRC) based on the fixed-time high-order sliding mode method. A switching-type uniformly convergent differentiator is used to improve the extended state observer for estimating and attenuating the lumped disturbance more accurately. A multivariable high-order sliding mode feedback law is derived to achieve fixed time convergence. The timely convergence of the designed extended state observer and the feedback law is proved theoretically. Mathematical simulations with detailed actuator models and real time experiments are performed to demonstrate the robustness and practicability of the proposed control scheme.
Visual–inertial odometry is an effective system for mobile robot navigation. This article presents an egomotion estimation method for a dual-sensor system consisting of a camera and an inertial measurement unit (IMU) based on the cubature information filter and H∞ filter. The intensity of the image was used as the measurement directly. The measurements from the two sensors were fused with a hybrid information filter in a tightly coupled way. The hybrid filter used the third-degree spherical-radial cubature rule in the time-update phase and the fifth-degree spherical simplex-radial cubature rule in the measurement-update phase for numerical stability. The robust H∞ filter was combined into the measurement-update phase of the cubature information filter framework for robustness toward non-Gaussian noises in the intensity measurements. The algorithm was evaluated on a common public dataset and compared to other visual navigation systems in terms of absolute and relative accuracy.
Used widely in military and civil applications, autonomous robots have shown promising in planet exploration, seabed survey, and disaster rescue. A lot of robotic research concentrates on localization and mapping dealing with the basic problems in robotic research: “Where I am?” and “How is the environment like?”. The two problems consist a coupled problem named Simultaneous Localization and Mapping (SLAM) in unknown environment exploration. This problem is summarized by Hugh D. Whyte in his paper published in 1991 [1]. Forced by requirement of motion in unknown environment, many researchers in robotics make efforts to solve SLAM problem in recent decades.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.