A new coronavirus SARS-CoV-2, also called novel coronavirus 2019 (2019-nCoV), started to circulate among humans around December 2019, and it is now widespread as a global pandemic. The disease caused by SARS-CoV-2 virus is called COVID-19, which is highly contagious and has an overall mortality rate of 6.35% as of May 26, 2020. There is no vaccine or antiviral available for SARS-CoV-2. In this study, we report our discovery of inhibitors targeting the SARS-CoV-2 main protease (M pro). Using the FRET-based enzymatic assay, several inhibitors including boceprevir, GC-376, and calpain inhibitors II, and XII were identified to have potent activity with single-digit to submicromolar IC 50 values in the enzymatic assay. The mechanism of action of the hits was further characterized using enzyme kinetic studies, thermal shift binding assays, and native mass spectrometry. Significantly, four compounds (boceprevir, GC-376, calpain inhibitors II and XII) inhibit SARS-CoV-2 viral replication in cell culture with EC 50 values ranging from 0.49 to 3.37 µM. Notably, boceprevir, calpain inhibitors II and XII represent novel chemotypes that are distinct from known substrate-based peptidomimetic M pro inhibitors. A complex crystal structure of SARS-CoV-2 M pro with GC-376, determined at 2.15 Å resolution with three protomers per asymmetric unit, revealed two unique binding configurations, shedding light on the molecular interactions and protein conformational flexibility underlying substrate and inhibitor binding by M pro. Overall, the compounds identified herein provide promising starting points for the further development of SARS-CoV-2 therapeutics.
The main protease (Mpro) of SARS-CoV-2 is a key antiviral drug target. While most Mpro inhibitors have a γ-lactam glutamine surrogate at the P1 position, we recently discovered several Mpro inhibitors have hydrophobic moieties at the P1 site, including calpain inhibitors II and XII, which are also active against human cathepsin L, a host-protease that is important for viral entry. In this study, we solved X-ray crystal structures of Mpro in complex with calpain inhibitors II and XII, and three analogs of GC-376. The structure of Mpro with calpain inhibitor II confirmed the S1 pocket can accommodate a hydrophobic methionine side chain, challenging the idea that a hydrophilic residue is necessary at this position. Interestingly, the structure of calpain inhibitor XII revealed an unexpected, inverted binding pose. Taken together, the biochemical, computational, structural, and cellular data presented herein provide new directions for the development of dual inhibitors as SARS-CoV-2 antivirals.
The influenza A virus M2 proton channel (A/M2) is the target of the antiviral drugs amantadine and rimantadine, whose use has been discontinued due to widespread drug resistance. Among the handful of drug-resistant mutants, S31N is found in more than 95% of the currently circulating viruses and shows greatly decreased inhibition by amantadine. The discovery of inhibitors of S31N has been hampered by the limited size, polarity, and dynamic nature of its amantadine-binding site. Nevertheless, we have discovered smallmolecule drugs that inhibit S31N with potencies greater than amantadine's potency against WT M2. Drug binding locks the protein into a well-defined conformation, and the NMR structure of the complex shows the drug bound in the homotetrameric channel, threaded between the side chains of Asn31. Unrestrained molecular dynamics simulations predicted the same binding site. This S31N inhibitor, like other potent M2 inhibitors, contains a charged ammonium group. The ammonium binds as a hydrate to one of three sites aligned along the central cavity that appear to be hotspots for inhibition. These sites might stabilize hydronium-like species formed as protons diffuse through the outer channel to the proton-shuttling residue His37 near the cytoplasmic end of the channel.M2-S31N mutant structure | membrane protein structure | M2-S31N inhibitorT he influenza A virus M2 proton channel (A/M2) is the target of the antiviral drugs amantadine and rimantadine (1-3), which bind directly to the pore of the channel (2-4). Although amantadine has been widely used for several decades, drug resistance has curtailed the use of this family of drugs. Many amantadineresistant influenza viruses can be selected in cell culture (5, 6). A subset of these mutations is found in infected patients undergoing treatment with amantadine (7), and reverse-engineered viruses harboring various pore-lining mutations are competent to replicate in the mouse (8). However, many of these mutations give rise to somewhat attenuated viruses that are less transmissible than WT virus, and they tend to revert in the absence of drug pressure (6, 9). Indeed, large-scale sequencing of transmissible viruses isolated as early as 1918 showed that mutations to pore-lining residues are allowed only within the first turn of the transmembrane (TM) helix at positions 26, 27, and 31 (10). S31N has long been the predominant amantadine-resistant mutation in M2 (11)(12)(13)(14). It predominated in 98-100% of the transmissible amantadineresistant H1N1, H5N1, and H3N2 strains isolated from humans, birds, and swine in the past decade. V27A and L26F are less frequent mutations (10,11,15). Extensive studies of point mutations to the pore-lining residues of M2 have been conducted to understand the paucity of natural variants (16,17). Numerous mutants in the N-terminal aqueous pore retained the ability to conduct protons selectively over other ions, although the magnitude and pH dependence of their conduction varied. However, only a few mutations at the most distal sites, V27A,...
The influenza A virus M2 protein (A/M2) is a homotetrameric pH-activated proton transporter/channel that mediates acidification of the interior of endosomally encapsulated virus. This 97-residue protein has a single transmembrane (TM) helix, which associates to form homotetramers that bind the anti-influenza drug amantadine. However, the minimal fragment required for assembly and proton transport in cellular membranes has not been defined. Therefore, the conductance properties of truncation mutants expressed in Xenopus oocytes were examined. A short fragment spanning residues 21-61, M2(21-61), was inserted into the cytoplasmic membrane and had specific, amantadine-sensitive proton transport activity indistinguishable from that of full-length A/M2; an epitope-tagged version of an even shorter fragment, M2(21-51)-FLAG, had specific activity within a factor of 2 of the full-length protein. Furthermore, synthetic fragments including a peptide spanning residues 22-46 were found to transport protons into liposomes in an amantadine-sensitive manner. In addition, the functionally important His-37 residue pKa values are highly perturbed in the tetrameric form of the protein, a property conserved in the TM peptide and full-length A/M2 in both micelles and bilayers. These data demonstrate that the determinants for folding, drug binding, and proton translocation are packaged in a remarkably small peptide that can now be studied with confidence.liposomes ͉ oocyte ͉ H ϩ ͉ intracellular pH ͉ Xenopus laevis
Among the drug targets being investigated for SARS-CoV-2, the viral main protease (M pro ) is one of the most extensively studied. M pro is a cysteine protease that hydrolyzes the viral polyprotein at more than 11 sites. It is highly conserved and has a unique substrate preference for glutamine in the P1 position. Therefore, M pro inhibitors are expected to have broad-spectrum antiviral activity and a high selectivity index. Structurally diverse compounds have been reported as M pro inhibitors. In this study, we investigated the mechanism of action of six previously reported M pro inhibitors, ebselen, disulfiram, tideglusib, carmofur, shikonin, and PX-12, using a consortium of techniques including FRET-based enzymatic assay, thermal shift assay, native mass spectrometry, cellular antiviral assays, and molecular dynamics simulations. Collectively, the results showed that the inhibition of M pro by these six compounds is nonspecific and that the inhibition is abolished or greatly reduced with the addition of reducing reagent 1,4-dithiothreitol (DTT). Without DTT, these six compounds inhibit not only M pro but also a panel of viral cysteine proteases including SARS-CoV-2 papain-like protease and 2A pro and 3C pro from enterovirus A71 (EV-A71) and EV-D68. However, none of the compounds inhibits the viral replication of EV-A71 or EV-D68, suggesting that the enzymatic inhibition potency IC 50 values obtained in the absence of DTT cannot be used to faithfully predict their cellular antiviral activity. Overall, we provide compelling evidence suggesting that these six compounds are nonspecific SARS-CoV-2 M pro inhibitors and urge the scientific community to be stringent with hit validation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.