Because of difficulty processing the electronic medical record data of patients with cerebrovascular disease, there is little mature recognition technology capable of identifying the named entity of cerebrovascular disease. Excellent research results have been achieved in the field of named entity recognition (NER), but there are several problems in the pre processing of Chinese named entities that have multiple meanings, of which neglecting the combination of contextual information is one. Therefore, to extract five categories of key entity information for diseases, symptoms, body parts, medical examinations, and treatment in electronic medical records, this paper proposes the use of a BERT-BiGRU-CRF named entity recognition method, which is applied to the field of cerebrovascular diseases. The BERT layer first converts the electronic medical record text into a low-dimensional vector, then uses this vector as the input to the BiGRU layer to capture contextual features, and finally uses conditional random fields (CRFs) to capture the dependency between adjacent tags. The experimental results show that the F1 score of the model reaches 90.38%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.