Background & Aims-De novo lipogenesis is believed to be involved in oncogenesis. We investigated the role of aberrant lipid biosynthesis in pathogenesis of human hepatocellular carcinoma (HCC).
SUMMARY
The altered metabolism of tumors has been considered a target for anti-cancer therapy. However, the relationship between distinct tumor-initiating lesions and anomalies of tumor metabolism in vivo has not been addressed. We report that MYC-induced mouse liver tumors significantly increase both glucose and glutamine catabolism, whereas MET-induced liver tumors use glucose to produce glutamine. Increased glutamine catabolism in MYC-induced liver tumors is associated with decreased levels of glutamine synthetase (Glul) and the switch from Gls2 to Gls1 glutaminase. In contrast to liver tumors, MYC-induced lung tumors display increased expression of both Glul and Gls1 and accumulate glutamine. We also show that inhibition of Gls1 kills cells that over-express MYC and catabolize glutamine. Our results suggest that the metabolic profiles of tumors are likely to depend on both the genotype and tissue of origin and have implications regarding the design of therapies targeting tumor metabolism.
Activation of v-akt murine thymoma viral oncogene homolog (AKT) and Ras pathways is often implicated in carcinogenesis. However, the oncogenic cooperation between these two cascades in relationship to hepatocellular carcinoma (HCC) development remains undetermined. To investigate this issue, we generated a mouse model characterized by combined overexpression of activated forms of AKT and neuroblastoma Ras viral oncogene homolog (N-Ras) protooncogenes in the liver via hydrodynamic gene transfer. The molecular mechanisms underlying crosstalk between AKT and N-Ras were assessed in the mouse model and further evaluated in human and murine HCC cell lines. We found that co-expression of AKT and N-Ras resulted in a dramatic acceleration of liver tumor development when compared with mice overexpressing AKT alone, whereas N-Ras alone did not lead to tumor formation. At the cellular level, concomitant upregulation of AKT and N-Ras resulted in increased proliferation and microvascularization when compared with AKT injected mice. Mechanistic studies suggested that accelerated hepatocarcinogenesis driven by AKT and N-Ras resulted from a strong activation of mammalian target of rapamycin complex 1 (mTORC1). Furthermore, elevated expression of FOXM1/SKP2 and c-Myc also contributed to rapid tumor growth in AKT/Ras mice, yet via mTORC1-independent mechanisms. The biological effects of co-activation of AKT and N-Ras were then recapitulated in vitro using HCC cell lines, which supports the functional significance of mTORC1, FOXM1/SKP2 and c-Myc signaling cascades in mediating AKT and N-Ras induced liver tumor development.
Conclusion
Our data demonstrate the in vivo crosstalk between the AKT and Ras pathways in promoting liver tumor development, and the pivotal role of mTORC1-dependent and independent pathways in mediating AKT and Ras induced hepatocarcinogenesis.
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide, with limited treatment options. AKT/mTOR and Ras/MAPK pathways are frequently deregulated in human hepatocarcinogenesis. Recently, we generated an animal model characterized by the co-expression of activated forms of AKT and Ras in the mouse liver. We found that concomitant activation of AKT/mTOR and Ras/MAPK cascades leads to rapid liver tumor development in AKT/Ras mice, mainly through mTORC1 induction. To further define the role of mTORC1 cascade in AKT/Ras induced HCC development, the mTORC1 inhibitor Rapamycin was administered to AKT/Ras mice at the time when small tumors started to emerge in the liver. Of note, Rapamycin treatment significantly delayed hepatocarcinogenesis in AKT/Ras mice. However, some microscopic lesions persisted in the livers of AKT/Ras mice despite the treatment and rapidly gave rise to HCC following Rapamycin withdrawal. Mechanistically, Rapamycin inhibited mTORC1 and mTORC2 pathways, lipogenesis and glycolysis, resulting in inhibition of proliferation in the treated livers. However, activated ERK and its downstream effectors, Mnk1 and eIF4E, were strongly upregulated in the residual lesions. Concomitant suppression of AKT/mTOR and Ras/MAPK pathways was highly detrimental for the growth of AKT/Ras cells in vitro. The study indicates the existence of a complex interplay between AKT/mTOR and Ras/MAPK pathways during hepatocarcinogenesis, with important implications for the understanding of HCC pathogenesis as well as for its prevention and treatment.
Mouse Double Minute homolog 4 (MDM4) gene upregulation often occurs in human hepatocellular carcinoma (HCC), but the molecular mechanisms responsible for its induction remain poorly understood. Here, we investigated the role of the phosphoinositide-3-kinase/v-akt murine thymoma viral oncogene homolog/mammalian target of Rapamycin (PI3K/AKT/mTOR) axis in the regulation of MDM4 levels in HCC.
The activity of MDM4 and the PI3K/AKT/mTOR pathway was modulated in human HCC cell lines via silencing and overexpression experiments. Expression of main pathway components was analyzed in an AKT mouse model and human HCCs.
MDM4 inhibition resulted in growth restraint of HCC cell lines both in vitro and in vivo. Inhibition of the PI3K-AKT and/or mTOR pathways lowered MDM4 protein levels in HCC cells and reactivated p53-dependent transcription. De-ubiquitination by ubiquitin-specific protease 2a and AKT-mediated phosphorylation protected MDM4 from proteasomal degradation and increased AKT protein stability. The eukaryotic elongation factor 1A2 (EEF1A2) was identified as an upstream inducer of PI3K supporting MDM4 stabilization. Also, we detected MDM4 protein upregulation in an AKT mouse model and a strong correlation between the expression of EEF1A2, activated/phosphorylated AKT, and MDM4 in human HCC (each rho>.8, P<.001). Noticeably, a strong activation of this cascade was associated with shorter patients' survival.
Conclusions
The EEF1A2/PI3K/AKT/mTOR axis promotes the protumorigenic stabilization of the MDM4 protooncogene in human HCC via a post-transcriptional mechanism. The activation level of the EEF1A2/PI3K/AKT/mTOR/MDM4 axis significantly influences the survival probability of HCC patients in vivo and may thus represent a promising molecular target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.