Ninety‐four putative G protein‐coupled receptors (GPCRs) were identified in the Musca domestica genome. They were annotated and compared with their homologues in Drosophila melanogaster. Phylogenetic analyses of the GPCRs from both species revealed that several family members shared a closer relationship based on the domain architecture. The expression profiles of these genes were examined by quantitative real‐time PCR amongst three strains of the house fly, a near‐isogenic line strain with imidacloprid resistance (N‐IRS), the corresponding susceptible strain (CSS) and another strain derived from field populations with imidacloprid resistance (IRS). We found that five GPCR genes were upregulated in the N‐IRS and eight GPCR genes were upregulated in the IRS strains compared to the CSS strain. The transgenic lines of D. melanogaster with the GPCR genes (LOC101899380 in the N‐IRS strain and LOC101895664 in the IRS strain) exhibited significantly increased tolerance to imidacloprid, and higher expression of cytochrome P450 genes. Bioinformatic analysis of LOC101899380 was carried out based on its full‐length nucleic acid sequence and putative amino acid sequence, and it was named Methuselah‐like10 (Mthl10) owing to its homology with D. melanogaster Mthl10. A cell‐base cell counting kit‐8 toxicity assay demonstrated that the expression of the GPCR gene LOC101899380 in Spodoptera frugiperda (Sf9) cells using a baculovirus‐mediated expression system can elevate the cell tolerance to imidacloprid, indirectly supporting the hypothesis that the GPCR gene LOC101899380 plays some role in imidacloprid resistance. These results should be useful for furthering understanding of the regulatory pathway by which house flies develop resistance.
Two unique housefly strains, PSS and N-PRS (near-isogenic line with the PSS), were used to clarify the mechanisms associated with propoxur resistance in the housefly, Musca domestica. The propoxurselected resistant (N-PRS) strain exhibited >1035-fold resistance to propoxur and 1.70-, 12.06-, 4.28-, 57.76-, and 57.54-fold cross-resistance to beta-cypermethrin, deltamethrin, bifenthrin, phoxim, and azamethiphos, respectively, compared to the susceptible (PSS) strain. We purified acetylcholinesterase (AChE) from the N-PRS and PSS strains using a procainamide affinity column and characterized the AChE. The sensitivity of AChE to propoxur based on the bimolecular rate constant (K i) was approximately 100-fold higher in the PSS strain compared to the N-PRS strain. The cDNA encoding Mdace from both the N-PRS strain and the PSS strain were cloned and sequenced using RT-PCR. The cDNA was 2073 nucleotides long and encoded a protein of 691 amino acids. A total of four single nucleotide polymorphisms (SNPs), I162M, V260L, G342A, and F407Y, were present in the region of the active site of AChE from the N-PRS strain. The transcription level and DNA copy number of Mdace were significantly higher in the resistant strain than in the susceptible strain. These results indicated that mutations combined with the up-regulation of Mdace might be essential in the housefly resistance to propoxur.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.