We report the synthesis, characterization, and application of a novel series of diketopyrrolopyrrole (DPP)-containing quinoidal small molecules as highly efficient n-type organic semiconductors in thin film transistors (TFTs). The first two representatives of these species exhibit maximum electron mobility up to 0.55 cm(2) V(-1) s(-1) with current on/current off (I(on)/I(off)) values of 10(6) for 1 by vapor evaporation, and 0.35 cm(2) V(-1) s(-1) with I(on)/I(off) values of 10(5)-10(6) for 2 by solution process in air, which is the first demonstration of DPP-based small molecules offering only electron transport characteristics in TFT devices. The results indicate that incorporation of a DPP moiety to construct quinoidal architecture is an effective approach to enhance the charge-transport capability.
Two linear fused heteroacenes bearing a pyrrolo[3,2-b]pyrrole core have been synthesized via a novel reductive ring closure methodology in three steps and in good overall yield. Preliminary OFET results showed that dinaphtho[2,3-b:2',3'-f]pyrrolo[3,2-b]pyrrole (DNPP) is a potential candidate for organic electronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.