Background: Current therapies for multiple myeloma (MM) are associated with toxicity and resistance, highlighting the need for novel effective therapeutics. Berberine (BBR), a botanical alkaloid derived from several Berberis medicinal plants, has exhibited anti-tumor effects, including against multiple myeloma (MM); however, the molecular mechanism underlying the anti-MM effect has not been previously described. This study aimed to identify the target of berberine and related mechanisms involved in its therapeutic activity against MM. Results: Here, we demonstrated that BBR treatment killed MM cells in vitro and prolonged the survival of mice bearing MM xenografts in vivo. A screening approach integrating surface plasmon resonance (SPR) with liquid chromatography-tandem mass spectrometry (LC-MS/MS) identified UHRF1 (ubiquitin-like with PHD and RING Finger domains 1) as a potential target of BBR. Combining molecular docking and SPR analysis, we confirmed UHRF1 as a BBR-binding protein and discovered that BBR binds UHRF1 in the tandem tudor domain and plant homeodomain (TTD-PHD domain). BBR treatment induced UHRF1 degradation via the ubiquitin-dependent proteasome system and reactivated p16 INK4A and p73 in MM cells. Overexpression of UHRF1 promoted the MM cell proliferation and rendered MM cells more resistant to BBR, while silencing of UHRF1 with siRNA attenuated BBR-induced cytotoxicity. Conclusions: In summary, our study has identified UHRF1 as a direct target of BBR and uncovered molecular mechanisms involved in the anti-MM activity of BBR. Targeting UHRF1 through BBR may be a novel therapeutic strategy against MM.
Fei (2015) Systematic analysis of berberine-induced signaling pathway between miRNA clusters and mRNAs and identification of mir-99a∼125b cluster function by seed-targeting inhibitors in multiple myeloma cells, RNA Biology, 12:1, 82-91, DOI: 10.1080/15476286.2015 Keywords: berberine, bioinformatics, multiple myeloma, mir-99a»125b cluster, seed sequence, signaling pathwayBackground: Berberine (BBR) is a natural alkaloid derived from a traditional Chinese herbal medicine. However, the exact mechanisms underlying the different effects of berberine on MM cells have not been fully elucidated. Methods: A systematic analysis assay integrated common signaling pathways modulated by the 3 miRNA clusters and mRNAs in MM cells after BBR treatment. The role of the mir-99a»125b cluster, an important oncomir in MM, was identified by comparing the effects of t-anti-mirs with complete complementary antisense locked nucleic acids (LNAs) against mature mir-125b (anti-mir-125b). Results: Three miRNAs clusters (miR-99a»125b, miR-17»92 and miR-106»25) were significantly down-regulated in BBR-treated MM cells and are involved in multiple cancer-related signaling pathways. Furthermore, the top 5 differentially regulated genes, RAC1, NFkB1, MYC, JUN and CCND1 might play key roles in the progression of MM. Systematic integration revealed that 3 common signaling pathways (TP53, Erb and MAPK) link the 3 miRNA clusters and the 5 key mRNAs. Meanwhile, both BBR and seed-targeting t-anti-mir-99a»125b cluster LNAs significantly induced apoptosis, G2-phase cell cycle arrest and colony inhibition. Conclusions: our results suggest that BBR suppresses multiple myeloma cells, partly by down-regulating the 3 miRNA clusters and many mRNAs, possibly through TP53, Erb and MAPK signaling pathways. The mir-99a»125b cluster might be a novel target for MM treatment. These findings provide new mechanistic insight into the anticancer effects of certain traditional Chinese herbal medicine compounds.
Purpose: Imatinib, the breakpoint cluster region protein (BCR)/ Abelson murine leukemia viral oncogene homolog (ABL) inhibitor, is widely used to treat chronic myeloid leukemia (CML). However, imatinib resistance develops in many patients. Therefore, new drugs with improved therapeutic effects are urgently needed. Berberine (BBR) is a potent BCR-ABL inhibitor for imatinib-sensitive and -resistant CML.Experimental Design: Protein structure analysis and virtual screening were used to identify BBR targets in CML. Molecular docking analysis, surface plasmon resonance imaging, nuclear magnetic resonance assays, and thermoshift assays were performed to confirm the BBR target. The change in BCR-ABL protein expression after BBR treatment was assessed by Western blotting. The effects of BBR were assessed in vitro in cell lines, in vivo in mice, and in human CML bone marrow cells as a potential strategy to overcome imatinib resistance.Results: We discovered that BBR bound to the protein tyrosine kinase domain of BCR-ABL. BBR inhibited the activity of BCR-ABL and BCR-ABL with the T315I mutation, and it also degraded these proteins via the autophagic lysosome pathway by recruiting E3 ubiquitin-protein ligase LRSAM1. BBR inhibited the cell viability and colony formation of CML cells and prolonged survival in CML mouse models with imatinib sensitivity and resistance.Conclusions: The results show that BBR directly binds to and degrades BCR-ABL and BCR-ABL T315I via the autophagic lysosome pathway by recruiting LRSAM1. The use of BBR is a new strategy to improve the treatment of patients with CML with imatinib sensitivity or resistance.See related commentary by Elf, p. 3899
Berberine (BBR), a traditional Chinese herbal medicine compound, has emerged as a novel class of anti-tumor agent. Our previous microRNA (miRNA) microarray demonstrated that miR-106b/25 was significantly down-regulated in BBR-treated multiple myeloma (MM) cells. Here, systematic integration showed that miR-106b/25 cluster is involved in multiple cancer-related signaling pathways and tumorigenesis. MiREnvironment database revealed that multiple environmental factors (drug, ionizing radiation, hypoxia) affected the miR-106b/25 cluster expression. By targeting the seed region in the miRNA, tiny anti-mir106b/25 cluster (t-anti-mir106b/25 cluster) significantly induced suppression in cell viability and colony formation. Western blot validated that t-anti-miR-106b/25 cluster effectively inhibited the expression of P38 MAPK and phospho-P38 MAPK in MM cells. These findings indicated the miR-106b/25 cluster functioned as oncogene and might provide a novel molecular insight into MM.
miR-181a is downregulated in leukemia and affects its progression, drug resistance, and prognosis. However, the exact mechanism of its targets in leukemia, particularly in chronic myelogenous leukemia (CML), has not previously been established. Here, we use a multi-omics approach to demonstrate that protein tyrosine phosphatase, receptor type, f polypeptide, leukocyte common antigen (LAR) interacting protein (liprin), alpha 1 (PPFIA1) is a direct target for miR-181a in CML. Phospho-array assay shows that multiple phosphorylated proteins, particularly KIT signaling molecules, were downregulated in PPFIA1 inhibition. Additionally, PPFIA1 bound PARP1, a common molecule downstream of both PPFIA1 and BCR/ABL, to upregulate KIT protein through activation of nuclear factor kappa B (NF-κB)-P65 expression. Targeted inhibition of PPFIA1 and PARP1 downregulated c-KIT level, inhibited CML cell growth, and prolonged mouse survival. Overall, we report a critical regulatory miR-181a/PPFIA1/PARP1/NF-κB-P65/KIT axis in CML, and our preclinical study supports that targeted PPFIA1 and PARP1 may serve as a potential CML therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.