Abstract-Intensity inhomogeneities often occur in real-world images and may cause considerable difficulties in image segmentation. In order to overcome the difficulties caused by intensity inhomogeneities, we propose a region-based active contour model that draws upon intensity information in local regions at a controllable scale. A data fitting energy is defined in terms of a contour and two fitting functions that locally approximate the image intensities on the two sides of the contour. This energy is then incorporated into a variational level set formulation with a level set regularization term, from which a curve evolution equation is derived for energy minimization. Due to a kernel function in the data fitting term, intensity information in local regions is extracted to guide the motion of the contour, which thereby enables our model to cope with intensity inhomogeneity. In addition, the regularity of the level set function is intrinsically preserved by the level set regularization term to ensure accurate computation and avoids expensive reinitialization of the evolving level set function. Experimental results for synthetic and real images show desirable performances of our method.Index Terms-Image segmentation, intensity inhomogeneity, level set method, region-scalable fitting energy, variational method.
This paper proposes a new energy minimization method called multiplicative intrinsic component optimization (MICO) for joint bias field estimation and segmentation of magnetic resonance (MR) images. The proposed method takes full advantage of the decomposition of MR images into two multiplicative components, namely, the true image that characterizes a physical property of the tissues and the bias field that accounts for the intensity inhomogeneity, and their respective spatial properties. Bias field estimation and tissue segmentation are simultaneously achieved by an energy minimization process aimed to optimize the estimates of the two multiplicative components of an MR image. The bias field is iteratively optimized by using efficient matrix computations, which are verified to be numerically stable by matrix analysis. More importantly, the energy in our formulation is convex in each of its variables, which leads to the robustness of the proposed energy minimization algorithm. The MICO formulation can be naturally extended to 3D/4D tissue segmentation with spatial/sptatiotemporal regularization. Quantitative evaluations and comparisons with some popular softwares have demonstrated superior performance of MICO in terms of robustness and accuracy.
Abstract-Level set methods have been widely used in image processing and computer vision. In conventional level set formulations, the level set function typically develops irregularities during its evolution, which may cause numerical errors and eventually destroy the stability of the evolution. Therefore, a numerical remedy, called reinitialization, is typically applied to periodically replace the degraded level set function with a signed distance function. However, the practice of reinitialization not only raises serious problems as when and how it should be performed, but also affects numerical accuracy in an undesirable way. This paper proposes a new variational level set formulation in which the regularity of the level set function is intrinsically maintained during the level set evolution. The level set evolution is derived as the gradient flow that minimizes an energy functional with a distance regularization term and an external energy that drives the motion of the zero level set toward desired locations. The distance regularization term is defined with a potential function such that the derived level set evolution has a unique forward-and-backward (FAB) diffusion effect, which is able to maintain a desired shape of the level set function, particularly a signed distance profile near the zero level set. This yields a new type of level set evolution called distance regularized level set evolution (DRLSE). The distance regularization effect eliminates the need for reinitialization and thereby avoids its induced numerical errors. In contrast to complicated implementations of conventional level set formulations, a simpler and more efficient finite difference scheme can be used to implement the DRLSE formulation. DRLSE also allows the use of more general and efficient initialization of the level set function. In its numerical implementation, relatively large time steps can be used in the finite difference scheme to reduce the number of iterations, while ensuring sufficient numerical accuracy. To demonstrate the effectiveness of the DRLSE formulation, we apply it to an edge-based active contour model for image segmentation, and provide a simple narrowband implementation to greatly reduce computational cost.Index Terms-Forward and backward diffusion, image segmentation, level set method, narrowband, reinitialization.
Abstract-Intensity inhomogeneity often occurs in real-world images, which presents a considerable challenge in image segmentation. The most widely used image segmentation algorithms are region-based and typically rely on the homogeneity of the image intensities in the regions of interest, which often fail to provide accurate segmentation results due to the intensity inhomogeneity. This paper proposes a novel region-based method for image segmentation, which is able to deal with intensity inhomogeneities in the segmentation. First, based on the model of images with intensity inhomogeneities, we derive a local intensity clustering property of the image intensities, and define a local clustering criterion function for the image intensities in a neighborhood of each point. This local clustering criterion function is then integrated with respect to the neighborhood center to give a global criterion of image segmentation. In a level set formulation, this criterion defines an energy in terms of the level set functions that represent a partition of the image domain and a bias field that accounts for the intensity inhomogeneity of the image. Therefore, by minimizing this energy, our method is able to simultaneously segment the image and estimate the bias field, and the estimated bias field can be used for intensity inhomogeneity correction (or bias correction). Our method has been validated on synthetic images and real images of various modalities, with desirable performance in the presence of intensity inhomogeneities. Experiments show that our method is more robust to initialization, faster and more accurate than the well-known piecewise smooth model. As an application, our method has been used for segmentation and bias correction of magnetic resonance (MR) images with promising results.Index Terms-Bias correction, image segmentation, intensity inhomogeneity, level set, MRI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.