Combining the ideas of generalized projection and the strongly subfeasible sequential quadratic programming (SQP) method, we present a new strongly subfeasible SQP algorithm for nonlinearly inequality-constrained optimization problems. The algorithm, in which a new unified step-length search of Armijo type is introduced, starting from an arbitrary initial point, produces a feasible point after a finite number of iterations and from then on becomes a feasible descent SQP algorithm. At each iteration, only one quadratic program needs to be solved, and two correctional directions are obtained simply by explicit formulas that contain the same inverse matrix. Furthermore, the global and superlinear convergence results are proved under mild assumptions without strict complementarity conditions. Finally, some preliminary numerical results show that the proposed algorithm is stable and promising.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.