The multiple testing procedure plays an important role in detecting the presence of spatial signals for large scale imaging data. Typically, the spatial signals are sparse but clustered. This paper provides empirical evidence that for a range of commonly used control levels, the conventional FDR procedure can lack the ability to detect statistical significance, even if the p-values under the true null hypotheses are independent and uniformly distributed; more generally, ignoring the neighboring information of spatially structured data will tend to diminish the detection effectiveness of the FDR procedure. This paper first introduces a scalar quantity to characterize the extent to which the “lack of identification phenomenon” (LIP) of the FDR procedure occurs. Second, we propose a new multiple comparison procedure, called FDRL, to accommodate the spatial information of neighboring p-values, via a local aggregation of p-values. Theoretical properties of the FDRL procedure are investigated under weak dependence of p-values. It is shown that the FDRL procedure alleviates the LIP of the FDR procedure, thus substantially facilitating the selection of more stringent control levels. Simulation evaluations indicate that the FDRL procedure improves the detection sensitivity of the FDR procedure with little loss in detection specificity. The computational simplicity and detection effectiveness of the FDRL procedure are illustrated through a real brain fMRI dataset.
Functional magnetic resonance imaging (fMRI) aims to locate activated regions in human brains when specific tasks are performed. The conventional tool for analyzing fMRI data applies some variant of the linear model, which is restrictive in modeling assumptions. To yield more accurate prediction of the time-course behavior of neuronal responses, the semiparametric inference for the underlying hemodynamic response function is developed to identify significantly activated voxels. Under mild regularity conditions, we demonstrate that a class of the proposed semiparametric test statistics, based on the local linear estimation technique, follow $\chi^2$ distributions under null hypotheses for a number of useful hypotheses. Furthermore, the asymptotic power functions of the constructed tests are derived under the fixed and contiguous alternatives. Simulation evaluations and real fMRI data application suggest that the semiparametric inference procedure provides more efficient detection of activated brain areas than the popular imaging analysis tools AFNI and FSL.Comment: Published in at http://dx.doi.org/10.1214/07-AOS519 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
In the context of large-scale multiple testing, hypotheses are often accompanied with certain prior information. In this paper, we present a single-index modulated (SIM) multiple testing procedure, which maintains control of the false discovery rate while incorporating prior information, by assuming the availability of a bivariate $p$-value, $(p_1,p_2)$, for each hypothesis, where $p_1$ is a preliminary $p$-value from prior information and $p_2$ is the primary $p$-value for the ultimate analysis. To find the optimal rejection region for the bivariate $p$-value, we propose a criteria based on the ratio of probability density functions of $(p_1,p_2)$ under the true null and nonnull. This criteria in the bivariate normal setting further motivates us to project the bivariate $p$-value to a single-index, $p(\theta)$, for a wide range of directions $\theta$. The true null distribution of $p(\theta)$ is estimated via parametric and nonparametric approaches, leading to two procedures for estimating and controlling the false discovery rate. To derive the optimal projection direction $\theta$, we propose a new approach based on power comparison, which is further shown to be consistent under some mild conditions. Simulation evaluations indicate that the SIM multiple testing procedure improves the detection power significantly while controlling the false discovery rate. Analysis of a real dataset will be illustrated.Comment: Published in at http://dx.doi.org/10.1214/14-AOS1222 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
Regularization methods are characterized by loss functions measuring data fits and penalty terms constraining model parameters. The commonly used quadratic loss is not suitable for classification with binary responses, whereas the loglikelihood function is not readily applicable to models where the exact distribution of observations is unknown or not fully specified. We introduce the penalized Bregman divergence by replacing the negative loglikelihood in the conventional penalized likelihood with Bregman divergence, which encompasses many commonly used loss functions in the regression analysis, classification procedures and machine learning literature. We investigate new statistical properties of the resulting class of estimators with the number p(n) of parameters either diverging with the sample size n or even nearly comparable with n, and develop statistical inference tools. It is shown that the resulting penalized estimator, combined with appropriate penalties, achieves the same oracle property as the penalized likelihood estimator, but asymptotically does not rely on the complete specification of the underlying distribution. Furthermore, the choice of loss function in the penalized classifiers has an asymptotically relatively negligible impact on classification performance. We illustrate the proposed method for quasilikelihood regression and binary classification with simulation evaluation and real-data application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.