No abstract
Deconstructive alkynylation of an unstrained ketone catalyzed by an organic photocatalyst under blue light irradiation is reported for the first time. A broad substrate scope with up to 63 examples, excellent functional group tolerance, and gram scale reaction demonstrated the practicality of this novel alkynylation method. The dihydroquinazolinone derivative of trifluoroacetophenone had been proved to have potential as a novel trifluoromethylation reagent after working well for the trifluoromethylation reaction with various alkynyl bromides.
Long non-coding RNAs (lncRNAs) play an important role in the response of plants to drought stress. The previous studies have reported that overexpression of LEA3 and VOC could enhance drought tolerance and improve the oil content in Brassica napus and Arabidopsis thaliana, and most of the efforts have been invested in the gene function analysis, there is little understanding of how genes that involved in these important pathways are regulated. In the present study, the transcriptomic results of LEA3 and VOC over-expressed (OE) lines were compared with the RNAi lines, mutant lines and control lines under long-term and short-term drought treatment, a series of differentially expressed lncRNAs were identified, and their regulation patterns in mRNA were also investigated in above mentioned materials. The regulation of the target genes of differentially expressed lncRNAs on plant biological functions was studied. It was revealed that the mutant lines had less drought-response related lncRNAs than that of the OE lines. Functional analysis demonstrated that multiple genes were involved in the carbon-fixing and chlorophyll metabolism, such as CDR1, CHLM, and CH1, were regulated by the upregulated lncRNA in OE lines. In LEA-OE, AT4G13180 that promotes the fatty acid synthesis was regulated by five lncRNAs that were upregulated under both long-term and short-term drought treatments. The key genes, including of SHM1, GOX2, and GS2, in the methylglyoxal synthesis pathway were all regulated by a number of down-regulated lncRNAs in OE lines, thereby reducing the content of such harmful compounds produced under stress in plants. This study identified a series of lncRNAs related to the pathways that affect photosynthesis, chlorophyll synthesis, fatty acid synthesis, degradation, and other important effects on drought resistance and oil content. The present study provided a series of lncRNAs for further improvement of crop varieties, especially drought resistant and oil content traits.
Lipids are the primary form of energy storage and a major component of plasma membranes, which form the interface between the cell and the extracellular environment. Several lipidsincluding phosphoinositide, phosphatidic acid, sphingolipids, lysophospholipids, oxylipins, and free fatty acidsalso serve as substrates for the generation of signalling molecules. Abiotic stresses, such as drought and temperature stress, are known to affect plant growth. In addition, abiotic stresses can activate certain lipid-dependent signalling pathways that control the expression of stressresponsive genes and contribute to plant stress adaptation. Many studies have focused either on the enzymatic production and metabolism of lipids, or on the mechanisms of abiotic stress response. However, there is little information regarding the roles of plant lipids in plant responses to abiotic stress. In this review, we describe the metabolism of plant lipids and discuss their involvement in plant responses to abiotic stress. As such, this review provides crucial background for further research on the interactions between plant lipids and abiotic stress.
Exploring unknown glycosyltransferases (GTs) is important for compound structural glycodiversification during the search for drug candidates. Piericidin glycosides have been reported to have potent bioactivities; however, the GT responsible for piericidin glucosylation remains unknown. Herein, BmmGT1, a macrolide GT with broad substrate selectivity and isolated from Bacillus methylotrophicus B-9987, was found to be able to glucosylate piericidin A1 in vitro. Next, the codon-optimized GT gene, sbmGT1, which was designed based on BmmGT1, was heterologously expressed in the piericidin producer Streptomyces youssoufiensis OUC6819. Piericidin glycosides were thus significantly accumulated, leading to the identification of four new glucopiericidins (compounds 3, 4, 6, 7). Furthermore, using BmmGT1 as the probe, GT1507 was identified in the genome of S. youssoufiensis OUC6819 and demonstrated to be associated with piericidin glucosylation; the overexpression of this gene led to the identification of another new piericidin glycoside, N-acetyl glucosamine-piericidin (compound 8). Compounds 4, 7, and 8 displayed cytotoxic selectivity toward A549, A375, HCT-116, and HT-29 solid cancer cell line over THP-1 lymphoma cell line. Moreover, database mining of GT1507 homologs revealed their wide distribution in bacteria, mainly in those belonging to the High GC Gram+ and Firmicutes -clades, thus representing the potential for identification of novel tool enzymes for compound glycodiversification. IMPORTANCE Numerous bioactive natural products are appended with sugar moieties, and are often critical for their bioactivities. Glycosyltransferases (GTs) are powerful tools for the glycodiversification of natural products. Although piericidin glycosides display potent bioactivities, the GT involved in glucosylation is unclear. In this study, five new piericidin glycosides (compounds 3, 4, 6, 7, and 8) were generated following the overexpression of GT-coding genes in a piericidin producer. Three of them (compounds 4, 7 and 8) displayed cytotoxic selectivity. Notably, GT1507 was demonstrated to be related to piericidin glucosylation in vivo. Furthermore, mining of GT1507 homologs from the GenBank database revealed their wide distribution across numerous bacteria. Our findings would greatly facilitate the exploration of GTs to glycodiversify small molecules in the search of drug candidates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.