Abstract. Using the data from the Proportional Counter Array (PCA) and the High-Energy X-ray Timing Experiment (HEXTE) on board Rossi X-Ray Timing Explorer for Z source GX 17+2, we investigate the evolution of its PCA spectra and HEXTE spectra along a "Z" track on its hardness-intensity diagram. A hard X-ray tail is detected in the HEXTE spectra. The detected hard X-ray tails are discontinuously scattered throughout the "Z" track. The found hard tail hardens from the horizontal branch, through the normal branch, to the flaring branch in principle and it contributes ∼(20-50)% of the total flux in 20-200 keV. Our joint fitting results of the PCA+HEXTE spectra in 3-200 keV show that the portion of Comptonization in the bulk-motion Comptonization (BMC) model accounts for the hard X-ray tail, which indicates that the BMC process could be responsible for the detected hard tail. The temperature of the seed photons for BMC is ∼2.7 keV, implying that these seed photons might be emitted from the surface of the neutron star (NS) or the boundary layer between the NS and the disk and, therefore, this process could take place around the NS or in the boundary layer.
Using all the observations from Rossi X-ray Timing Explorer for Z source GX 349+2, we systematically carry out cross-correlation analysis between its soft and hard X-ray light curves. During the observations from January 9 to January 29, 1998, GX 349+2 traced out the most extensive Z track on its hardness-intensity diagram, making a comprehensive study of cross-correlation on the track. The positive correlations and positively correlated time lags are detected throughout the Z track. Outside the Z track, anti-correlations and anti-correlated time lags are found, but the anti-correlated time lags are much longer than the positively correlated time lags, which might indicate different mechanisms for producing the two types of time lags. We argue that neither the short-term time lag models nor the truncated accretion disk model can account for the long-term time lags in neutron star low mass X-ray binaries (NS-LMXBs). We suggest that the extended accretion disk corona model could be an alternative model to explain the long-term time lags detected in NS-LMXBs.
Using the data from the Proportional Counter Array on board theRossi X-Ray Timing Explorersatellite, we study the orbital modulation for the spectrum and mass accretion rate of Cir X-1 during its two orbital periods. We use a model consisting of a blackbody, a multicolor disk blackbody, and a line component to fit the spectrum and find that the spectrum is obviously modulated by the orbital phase. It is shown that the disk accretion rate in Cir X-1 undergoes three states during the orbital period. At the periastron with orbital phase 0-0.1, the disk accretion rate is sup-Eddington, then from phase 0.1 to the apastron (phase 0.5) it decreases dramatically and becomes near-Eddington, and from the apastron to the next periastron (phase 1) the disk accretion rate approximates Eddington and tends to be steady. We argue that the evolution of the disk accretion rate is attributed to the high orbital eccentricity of this source. The mass accretion rate onto the neutron star is much less than that onto the inner disk, indicating significant outflows in this source
Abstract. From the extreme position of disk motion, we infer the neutron star (NS) surface magnetic field strength (B0) of Z-source GX 17+2 and Cyg X-2. The inferred B0 of GX 17+2 and Cyg X-2 are ∼(1-5)×108 G and ∼(1-3)×10 8 G, respectively, which are not inferior to that of millisecond X-ray pulsars or atoll sources. It is likely that the NS magnetic axis of Z sources is parallel to the axis of rotation, which could result in the lack of pulsations in these sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.