A label-free immunosensor based on antibody-modified graphene field effect transistor (GFET) was presented. Antibodies targeting carcinoembryonic antigen (Anti-CEA) were immobilized to the graphene surface via non-covalent modification. The bifunctional molecule, 1-pyrenebutanoic acid succinimidyl ester, which is composed of a pyrene and a reactive succinimide ester group, interacts with graphene non-covalently via π-stacking. The succinimide ester group reacts with the amine group to initiate antibody surface immobilization, which was confirmed by X-ray Photoelectron Spectroscopy, Atomic Force Microscopy and Electrochemical Impedance Spectroscopy. The resulting anti-CEA modified GFET sufficiently monitored the reaction between CEA protein and anti-CEA in real-time with high specificity, which revealed selective electrical detection of CEA with a limit of detection (LOD) of less than 100pg/ml. The dissociation constant between CEA protein and anti-CEA was estimated to be 6.35×10M, indicating the high affinity and sensitivity of anti-CEA-GFET. Taken together, the graphene biosensors provide an effective tool for clinical application and point-of-care medical diagnostics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.