Accurate indoor location information has considerable social and economic value in applications, such as pedestrian heatmapping and indoor navigation. Ultrasonic-based approaches have received significant attention mainly since they have advantages in terms of positioning with temporal correlation. However, it is a great challenge to gain accurate indoor localization due to complex indoor environments such as non-uniform indoor facilities. To address this problem, we propose a fusion localization method in the indoor environment that integrates the localization information of inertial sensors and acoustic signals. Meanwhile, the threshold scheme is used to eliminate outliers during the positioning process. In this paper, the estimated location is fused by the adaptive distance weight for the time difference of arrival (TDOA) estimation and improved pedestrian dead reckoning (PDR) estimation. Three experimental scenes have been developed. The experimental results demonstrate that the proposed method has higher localization accuracy in determining the pedestrian location than the state-of-the-art methods. It resolves the problem of outliers in indoor acoustic signal localization and cumulative errors in inertial sensors. The proposed method achieves better performance in the trade-off between localization accuracy and low cost.
Accurate indoor localization estimation has important social and commercial values, such as indoor location services and pedestrian retention times. Acoustic-based methods can achieve high localization accuracies in specific scenarios with special equipment; however, it is a challenge to obtain accurate localization with general equipment in indoor environments. To solve this problem, we propose a novel fusion CHAN and the improved pedestrian dead reckoning (PDR) indoor localization system (CHAN-IPDR-ILS). In this system, we propose a step length estimation method that adds the previous two steps for extracting more accurate information to estimate the current step length. The maximum influence factor is set for the previous two steps to ensure the importance of the current step length. We also propose a heading direction correction method to mitigate the errors in sensor data. Finally, pedestrian localization is achieved using a motion model with acoustic estimation and dynamic improved PDR estimation. In the fusion localization, the threshold and confidence level of the distance between estimation base-acoustic and improved PDR estimation are set to mitigate accidental and cumulative errors. The experiments were performed at trial sites with different users, devices, and scenarios, and experimental results demonstrate that the proposed method can achieve a higher accuracy compared with the state-of-the-art methods. The proposed fusion localization system manages equipment heterogeneity and provides generality and flexibility with different devices and scenarios at a low cost.
The discriminative correlation filter (DCF)-based tracking method has shown good accuracy and efficiency in visual tracking. However, the periodic assumption of sample space causes unwanted boundary effects, restricting the tracker’s ability to distinguish between the target and background. Additionally, in the real tracking environment, interference factors such as occlusion, background clutter, and illumination changes cause response aberration and, thus, tracking failure. To address these issues, this work proposed a novel tracking method named the background-suppressed dual-regression correlation filter (BSDCF) for visual tracking. First, we utilize the background-suppressed function to crop out the target features from the global features. In the training step, while introducing the spatial regularity constraint and background response suppression regularization, we construct a dual regression structure to train the target and global filters separately. The aim is to exploit the difference between the output response maps for mutual constraint to highlight the target and suppress the background interference. Furthermore, in the detection step, the global response can be enhanced by a weighted fusion of the target response to further improve the tracking performance in complex scenes. Finally, extensive experiments are conducted on three public benchmarks (including OTB100, TC128, and UAVDT), and the experimental results indicate that the proposed BSDCF tracker achieves tracking performance comparable to many state-of-the-art (SOTA) trackers in a variety of complex situations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.