Type-II Dirac/Weyl semimetals are characterized by strongly tilted Dirac cones such that the Dirac/Weyl node emerges at the boundary of electron and hole pockets as a new state of quantum matter, distinct from the standard Dirac/Weyl points with a point-like Fermi surface which are referred to as type-I nodes. The type-II Dirac fermions were recently predicted by theory and have since been confirmed in experiments in the PtSe 2 -class of transition metal dichalcogenides. However, the Dirac nodes observed in PtSe 2 , PdTe 2 and PtTe 2 candidates are quite far away from the Fermi level, making the signature of topological fermions obscure as the physical properties are still dominated by the non-Dirac quasiparticles. Here we report the synthesis of a new type-II Dirac semimetal NiTe 2 in which a pair of type-II Dirac nodes are located very close to the Fermi level. The quantum oscillations in this material reveal a nontrivial Berry's phase associated with these Dirac fermions. Our first principles calculations further unveil a topological Dirac cone in its surface states. Therefore, NiTe 2 may not only represent an improved system to formulate the theoretical understanding of the exotic consequences of type-II Dirac fermions, it also facilitates possible applications based on these topological carriers.
The intrinsic magnetic layered topological insulator MnBi 2 Te 4 with nontrivial topological properties and magnetic order has become a promising system for exploring exotic quantum phenomena such as quantum anomalous Hall effect.
However, the layer-dependent magnetism of MnBi 2 Te 4 , which is fundamental and crucial for further exploration of quantum phenomena in this system, remains elusive. Here, we use polar reflective magnetic circular dichroism spectroscopy, combined with theoretical calculations, to obtain an in-depth understanding of the layer-dependent magnetic properties in MnBi 2 Te 4 . The magnetic behavior of MnBi 2 Te 4 exhibits evident odd-even layer-number effect, i.e. the oscillations of the coercivity of the hysteresis loop (at μ 0 H c ) and the spinflop transition (at μ 0 H 1 ), concerning the Zeeman energy and magnetic anisotropy energy. In the even-number septuple layers, an anomalous magnetic hysteresis loop is observed, which is attributed to the thickness-independent surface-related magnetization. Through the linear-chain model, we can clarify the odd-even effect of the spin-flop field and determine the evolution of magnetic states under the external magnetic field. The mean-field method also allows us to trace the experimentally observed magnetic phase diagrams to the magnetic fields, layer numbers and especially, temperature. Overall, by harnessing the unusual layerdependent magnetic properties, our work paves the way for further study of quantum properties of MnBi 2 Te 4 .
Transition-metal dichalcogenides (TMDs) offer an ideal platform to experimentally realize Dirac fermions. However, typically these exotic quasiparticles are located far away from the Fermi level, limiting the contribution of Dirac-like carriers to the transport properties. Here we show that NiTe 2 hosts both bulk Type-II Dirac points and topological surface states. The underlying mechanism is shared with other TMDs and based on the generic topological character of the Te p-orbital manifold. However, unique to NiTe 2 , a significant contribution of Ni d orbital states shifts the energy of the Type-II Dirac point close to the Fermi level. In addition, one of the topological surface states intersects the Fermi energy and exhibits a remarkably large spin splitting of 120 meV. Our results establish NiTe 2 as an exciting candidate for next-generation spintronics devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.