It is imperative to further the understanding of the drug resistance mechanisms of ovarian cancer (OC) and to identify useful biological markers for prognosis prediction. Cormine, cBioportal, and The Cancer Genome Atlas databases were used to search microarray data of gene methylation related to OC, drug resistance in OC, and prognosis, and to analyze methylated genes potentially inducing the drug resistance in OC. Fifty-five DNA-methylated genes significantly associated with drug resistance in OC were screened, and the regulatory mechanisms underlying changes in methylation levels of these genes were systematically integrated. Enrichment and annotation of biological processes indicated that most of the above DNA-methylated genes were significantly associated with cell proliferation and cell cycle. In addition, pathway enrichment demonstrated that the above DNA-methylated genes were significantly associated with PI3K-AKT and P53 signaling pathways. Among the 55 genes, 4 were significantly associated with OC prognostic disease-free survival, namely bromodomain containing 4, PDZ domain containing 1 ( PDZK1) , phosphatase and tensin homolog, and TNF receptor superfamily member 10c; 5 were significantly related to overall survival, namely bromodomain containing 4, PDZK1 , PIK3C2B , Rh associated glycoprotein, and DYRK ; among them, the degree of methylation of TNF receptor superfamily member 10c, PDZK1 , and Rh associated glycoprotein genes was significantly correlated with mRNA expression. Furthermore, PDZK1 , Rh associated glycoprotein, and TNF receptor superfamily member 10c genes showed significant hypomethylation in drug-resistance tissues of OC, and their mRNAs had significantly high expression. The association between the methylation of these 55 genes and OC and drug resistance in OC, in addition to bioinformatics analyses clarify the important mechanisms of gene methylation in the development, progression, and drug resistance of OC.
Ovarian cancer is one of the deadliest gynecologic malignancies and is the seventh leading cause of mortalities and morbidities globally. Although there are various therapeutic strategies, a major challenge for scientific community is to come up with effective strategy to treat ovarian cancer. Tilianin, a polyphenol flavonoid is well known for its extensive biological actions like cardioprotective, neuroprotective, anti-oxidant, anti-inflammatory, anti-diabetic and anti-tumor properties. The current study is designed to investigate the anti-cancer action of Tilianin in ovarian cancer (PA-1) cells. The findings of this study revealed that Tilianin treatment results in significant and concentration dependent decrease in cell viability. The growth inhibiting action of Tilianin is associated with apoptosis which was confirmed by DAPI and AO/EtBr staining. The Tilianin-triggered apoptosis in PA-1 cells was correlated with elevated generation of ROS, loss of mitochondrial membrane potential, alterations in pro-apoptotic (upregulated mRNA expression of Bax) and anti-apoptotic (downregulated mRNA expression of Bcl2) factors and activation of caspase-8, −9 and −3. Cell cycle analysis revealed that Tilianin treatment prevented G1/S transition through reduced mRNA expression of cyclin D1. Additionally, the findings of this study also showed Tilianin inhibited JAK2/STAT3 signaling (downregulated expression of pJAK2, JAK2, pSTAT3, and STAT3) with no change in mRNA expression level of ERK indicating its non-involvement in the apoptotic and/or growth inhibition of ovarian cancer cells. In conclusion, the findings of this exploration provided clear evidence of anti-cancer effects of Tilianin in PA-1 cells through its anti-proliferative action, ability to induce apoptosis both through extrinsic and intrinsic pathways, cell cycle (G1/S) arrest and JAK2/STAT3 signaling inhibition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.