This study aimed to introduce a one-dimensional (1D) computational fluid dynamics (CFD) model for airway resistance and lung compliance to examine the relationship between airway resistance, pressure, and regional flow distribution. We employed five healthy and five asthmatic subjects who had dynamic computed tomography (CT) scans (4D CT) along with two static scans at total lung capacity and functional residual capacity. Fractional air-volume change ([Formula: see text]) from 4D CT was used for a validation of the 1D CFD model. We extracted the diameter ratio from existing data sets of 61 healthy subjects for computing mean and standard deviation (SD) of airway constriction/dilation in CT-resolved airways. The lobar mean (SD) of airway constriction/dilation was used to determine diameters of CT-unresolved airways. A 1D isothermal energy balance equation was solved, and pressure boundary conditions were imposed at the acinar region ( model A) or at the pleural region ( model B). A static compliance model was only applied for model B to link acinar and pleural regions. The values of 1D CFD-derived [Formula: see text] for model B demonstrated better correlation with 4D CT-derived [Formula: see text] than model A. In both inspiration and expiration, asthmatic subjects with airway constriction show much greater pressure drop than healthy subjects without airway constriction. This increased transpulmonary pressures in the asthmatic subjects, leading to an increased workload (hysteresis). The 1D CFD model was found to be useful in investigating flow structure, lung hysteresis, and pressure distribution for healthy and asthmatic subjects. The derived flow distribution could be used for imposing boundary conditions of 3D CFD. NEW & NOTEWORTHY A one-dimensional (1D) computational fluid dynamics (CFD) model for airway resistance and lung compliance was introduced to examine the relationship between airway resistance, pressure, and regional flow distribution. The 1D CFD model investigated differences of flow structure, lung hysteresis, and pressure distribution for healthy and asthmatic subjects. The derived flow distribution could be used for imposing boundary conditions of three-dimensional CFD.
Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease and the traditional variables extracted from computed tomography (CT) images may not be sufficient to describe all the topological features of lung tissues in COPD patients. We employed an unsupervised three-dimensional (3D) convolutional autoencoder (CAE)-feature constructor (FC) deep learning network to learn from CT data and derive tissue pattern-clusters jointly. We then applied exploratory factor analysis (EFA) to discover the unobserved latent traits (factors) among pattern-clusters. CT images at total lung capacity (TLC) and residual volume (RV) of 541 former smokers and 59 healthy non-smokers from the cohort of the SubPopulations and Intermediate Outcome Measures in the COPD Study (SPIROMICS) were analyzed. TLC and RV images were registered to calculate the Jacobian (determinant) values for all the voxels in TLC images. 3D Regions of interest (ROIs) with two data channels of CT intensity and Jacobian value were randomly extracted from training images and were fed to the 3D CAE-FC model. 80 pattern-clusters and 7 factors were identified. Factor scores computed for individual subjects were able to predict spirometry-measured pulmonary functions. Two factors which correlated with various emphysema subtypes, parametric response mapping (PRM) metrics, airway variants, and airway tree to lung volume ratio were discriminants of patients across all severity stages. Our findings suggest the potential of developing factor-based surrogate markers for new COPD phenotypes.
Purpose Quantitative computed tomography (qCT) imaging-based cluster analysis identified clinically meaningful COPD former-smoker subgroups (clusters) based on cross-sectional data. We aimed to identify progression clusters for former smokers using longitudinal data. Patients and Methods We selected 472 former smokers from SPIROMICS with a baseline visit and a one-year follow-up visit. A total of 150 qCT imaging-based variables, comprising 75 variables at baseline and their corresponding progression rates, were derived from the respective inspiration and expiration scans of the two visits. The COPD progression clusters identified were then associated with subject demography, clinical variables and biomarkers. Results COPD severities at baseline increased with increasing cluster number. Cluster 1 patients were an obese subgroup with rapid progression of functional small airway disease percentage (fSAD%) and emphysema percentage (Emph%). Cluster 2 exhibited a decrease of fSAD% and Emph%, an increase of tissue fraction at total lung capacity and airway narrowing over one year. Cluster 3 showed rapid expansion of Emph% and an attenuation of fSAD%. Cluster 4 demonstrated severe emphysema and fSAD and significant structural alterations at baseline with rapid progression of fSAD% over one year. Subjects with different progression patterns in the same cross-sectional cluster were identified by longitudinal clustering. Conclusion qCT imaging-based metrics at two visits for former smokers allow for the derivation of four statistically stable clusters associated with unique progression patterns and clinical characteristics. Use of baseline variables and their progression rates enables identification of longitudinal clusters, resulting in a refinement of cross-sectional clusters.
Background: Quantitative CT (qCT) imaging-based cluster analysis identified clinically meaningful COPD former-smoker subgroups (clusters) based on cross-sectional data. We aimed to identify progression clusters for former smokers using longitudinal data.Patients and Methods: We selected 472 former smokers from SPIROMICS with a baseline visit and a one-year follow-up visit. A total of 150 qCT imaging-based variables, comprising 75 variables at baseline and their corresponding progression rates, were derived from the respective inspiration and expiration scans of the two visits. The COPD progression clusters identified were then associated with subject demography, clinical variables and biomarkers.Results: COPD severities at baseline increased with increasing cluster number. Cluster 1 patients were an obese subgroup with rapid progression of functional small airway disease percentage (fSAD%) and emphysema percentage (Emph%), and preserved FEV1%predicted but impairment of FEV1/FVC ratio over one year. Cluster 2 exhibited a decrease of fSAD% and Emph%, an increase of tissue fraction at total lung capacity, airway narrowing, and a reduced post-bronchodilator FEV1%predicted but preserved FEV1/FVC ratio over one year. Cluster 3 showed rapid expansion of Emph% and an attenuation of fSAD%. Cluster 4 demonstrated severe emphysema and fSAD and significant structural alterations at baseline with rapid progression of fSAD% over one year. Subjects with different progression patterns in the same cross-sectional cluster were identified by longitudinal clustering.Conclusions: qCT imaging-based metrics at two visits for former smokers allow for the derivation of four statistically stable clusters associated with unique progression patterns and clinical characteristics. Use of baseline variables and their progression rates enables identification of longitudinal clusters, resulting in a refinement of cross-sectional clusters.
The coronavirus disease 2019 (COVID-19) pandemic had a major impact on global health and was associated with millions of deaths worldwide. During the pandemic, imaging characteristics of chest X-ray (CXR) and chest computed tomography (CT) played an important role in the screening, diagnosis and monitoring the disease progression. Various studies suggested that quantitative image analysis methods including artificial intelligence and radiomics can greatly boost the value of imaging in the management of COVID-19. However, few studies have explored the use of longitudinal multi-modal medical images with varying visit intervals for outcome prediction in COVID-19 patients. This study aims to explore the potential of longitudinal multimodal radiomics in predicting the outcome of COVID-19 patients by integrating both CXR and CT images with variable visit intervals through deep learning. 2274 patients who underwent CXR and/or CT scans during disease progression were selected for this study. Of these, 946 patients were treated at the University of Pennsylvania Health System (UPHS) and the remaining 1328 patients were acquired at Stony Brook University (SBU) and curated by the Medical Imaging and Data Resource Center (MIDRC). 532 radiomic features were extracted with the Cancer Imaging Phenomics Toolkit (CaPTk) from the lung regions in CXR and CT images at all visits. We employed two commonly used deep learning algorithms to analyze the longitudinal multimodal features, and evaluated the prediction results based on the area under the receiver operating characteristic curve (AUC). Our models achieved testing AUC scores of 0.816 and 0.836, respectively, for the prediction of mortality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.