Electro-active paper (EAPap) is attractive as an electro-active polymer (EAP) actuator material due to its low weight, dry condition, large displacement output, low actuation voltage and low power consumption and biodegradability. EAPap is made from cellulose. Cellulose fibre is dissolved into a solution and made into a sheet, then thin electrodes are deposited on the cellulose paper to make an EAPap actuator. The performance of EAPap actuators was evaluated in terms of tip displacement, blocking force and electrical power consumption. The maximum tip displacement of 4.3 mm was obtained from a 40 mm long EAPap actuator when 0.25 kV mm−1 was applied. This actuation voltage is quite low compared with other electronic EAP materials. The effect of the environment in terms of humidity and temperature was also investigated. When the relative humidity was increased up to 95%, the tip displacement increased. When the temperature was increased the displacement slowly increased and then gradually decreased after the temperature reached 30 °C. These measurements were performed under a variety of environmental and input factors including frequency, actuation voltage, temperature and humidity.
Electro-Active Paper (EAPap) is attractive as an EAP actuator material due to its merits in terms of lightweight, dry condition, large displacement output, low actuation voltage and low power consumption. This paper presents the fabrication and performance test of EAPap actuators. EAPap material has been made from cellulose materials. Cellulose fiber is dissolved into a solution and made into a sheet by using a spin coater. Thin electrodes are deposited on the cellophane sheet to comprise an EAPap. Next the EAPap is made into plate or beam specimens cut along a specific orientation to enhance the actuator performance. The EAPap is clamped on electric power connector and placed in an environmental chamber and the tip displacement of EAPap is measured with laser sensor. Also the blocking force of EAPap sample is measured. The measured force is compared with a theoretical beam model. These measurements are performed under a variety of environmental and input factors including frequency, actuation voltage, temperature and humidity. Characteristics of EAPap in terms of fibrous nature, their crystallinity, and mechanical, physical and electrochemical characteristics are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.