In recent years, there has been an expedited trend in embracing bold and radical innovation of computer architectures, aiming at the continuation of computing performance improvement despite the slowed-down physical device scaling. One new frontier in this field focuses on Artificial Intelligence (AI) hardware. While functionality of AI hardware still remains the main focus, testability and dependability of these new architectures need to be addressed before the mainstream adoption. This survey paper covers the state-of-the-art in research and development of dependability and testability solutions for AI hardware including digital or analog implementations of Artificial Neural Networks (ANNs) and Spiking Neural Networks (SNNs), used in accelerators and neuromorphic designs. Trends, challenges and perspectives are also discussed in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.