Hydrogen generation through water electrolysis is an efficient technique for hydrogen production, but the expensive price and scarcity of noble metal electrocatalysts hinder its large-scale application. Herein, cobalt-anchored nitrogen-doped graphene aerogel electrocatalysts (Co-N-C) for oxygen evolution reaction (OER) are prepared by simple chemical reduction and vacuum freeze-drying. The Co (0.5 wt%)-N (1 wt%)-C aerogel electrocatalyst has an optimal overpotential (0.383 V at 10 mA/cm2), which is significantly superior to that of a series of M-N-C aerogel electrocatalysts prepared by a similar route (M = Mn, Fe, Ni, Pt, Au, etc.) and other Co-N-C electrocatalysts that have been reported. In addition, the Co-N-C aerogel electrocatalyst has a small Tafel slope (95 mV/dec), a large electrochemical surface area (9.52 cm2), and excellent stability. Notably, the overpotential of Co-N-C aerogel electrocatalyst at a current density of 20 mA/cm2 is even superior to that of the commercial RuO2. In addition, density functional theory (DFT) confirms that the metal activity trend is Co-N-C > Fe-N-C > Ni-N-C, which is consistent with the OER activity results. The resulting Co-N-C aerogels can be considered one of the most promising electrocatalysts for energy storage and energy saving due to their simple preparation route, abundant raw materials, and superior electrocatalytic performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.