Unlike distinct species, closely related species offer a great challenge for phylogeny reconstruction and species identification with DNA barcoding due to their often overlapping genetic variation. We tested a sibling species group of pine moth pests in China with a standard cytochrome c oxidase subunit I (COI) gene and two alternative internal transcribed spacer (ITS) genes (ITS1 and ITS2). Five different phylogenetic/DNA barcoding analysis methods (Maximum likelihood (ML)/Neighbor-joining (NJ), “best close match” (BCM), Minimum distance (MD), and BP-based method (BP)), representing commonly used methodology (tree-based and non-tree based) in the field, were applied to both single-gene and multiple-gene analyses. Our results demonstrated clear reciprocal species monophyly for three relatively distant related species, Dendrolimus superans, D. houi, D. kikuchii, as recovered by both single and multiple genes while the phylogenetic relationship of three closely related species, D. punctatus, D. tabulaeformis, D. spectabilis, could not be resolved with the traditional tree-building methods. Additionally, we find the standard COI barcode outperforms two nuclear ITS genes, whatever the methods used. On average, the COI barcode achieved a success rate of 94.10–97.40%, while ITS1 and ITS2 obtained a success rate of 64.70–81.60%, indicating ITS genes are less suitable for species identification in this case. We propose the use of an overall success rate of species identification that takes both sequencing success and assignation success into account, since species identification success rates with multiple-gene barcoding system were generally overestimated, especially by tree-based methods, where only successfully sequenced DNA sequences were used to construct a phylogenetic tree. Non-tree based methods, such as MD, BCM, and BP approaches, presented advantages over tree-based methods by reporting the overall success rates with statistical significance. In addition, our results indicate that the most closely related species D. punctatus, D. tabulaeformis, and D. spectabilis, may be still in the process of incomplete lineage sorting, with occasional hybridizations occurring among them.
Mitogenomes can provide information for phylogenetic analyses and evolutionary biology. The complete mitochondrial genome of Amata emma (Lepidoptera: Erebidae) was sequenced and analyzed in the study. The circular genome is 15,463 bp in size, with the gene content, orientation and order identical to other ditrysian insects. The genome composition of the major strand shows highly A+T biased and exhibits negative AT-skew and GC-skew. The initial codons are the canonical putative start codons ATN with the exception of cox1 gene which uses CGA instead. Ten genes share complete termination codons TAA, and three genes use incomplete stop codons TA or T. Additionally, the codon distribution and Relative Synonymous Codon Usage of the 13 PCGs in the A. emma mitogenome are consistent with those in other Noctuid mitogenomes. All tRNA genes have typical cloverleaf secondary structures, except for the trnS1 (AGN) gene, in which the dihydrouridine (DHU) arm is simplified down to a loop. The secondary structures of two rRNA genes broadly conform with the models proposed for these genes of other Lepidopteran insects. Except for the A+T-rich region, there are three major intergenic spacers, spanning at least 10 bp and five overlapping regions. There are obvious differences in the A+T-rich region between A. emma and other Lepidopteran insects reported previously except that the A+T-rich region contains an ‘ATAGA’ -like motif followed by a 19 bp poly-T stretch and a (AT)9 element preceded by the ‘ATTTA’ motif. It neither has a poly-A (in the α strand) upstream trnM nor potential stem-loop structures and just has some simple structures like (AT)nGTAT. The phylogenetic relationships based on nucleotide sequences of 13 PCGs using Bayesian inference and maximum likelihood methods provided a well-supported a broader outline of Lepidoptera and which agree with the traditional morphological classification and recently working, but with a much higher support.
1. Plant diversity loss can alter higher trophic-level communities via non-random species interactions, which in turn may cascade to affect key ecosystem functions. These non-random linkages might be best captured by patterns of phylogenetic diversity, which take into account co-evolutionary dependencies. However, lack of adequate phylogenetic data of higher trophic levels hampers our mechanistic understanding of biodiversity relationships in species-rich ecosystems.2. We used DNA barcoding to generate data on the phylogenetic diversity of lepidopteran caterpillars in a large-scale forest biodiversity experiment in subtropical China. We analysed how different metrics of lepidopteran phylogenetic diversity (Faith's PD, MPD, MNTD) and taxonomic diversity were influenced by multiple components of tree diversity (taxonomic, functional, phylogenetic). 3. Our data from six sampling periods represent 7,204 mitochondrial cytochrome c oxidase subunit I (COI) sequences of lepidopteran larvae, clustered into 461 molecular operational taxonomic units. Lepidopteran abundance, the effective number of species (irrespective of the focus on rare or common species) and Faith's PD and MPD (reflecting basal evolutionary splits), but not MNTD (reflecting recent evolutionary splits), significantly increased with experimentally manipulated | 2709 Journal of Ecology WANG et Al.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.