Graph Convolutional Networks (GCNs) have drawn tremendous attention in the past three years. Compared with other deep learning modalities, high-performance hardware acceleration of GCNs is as critical but even more challenging. The hurdles arise from the poor data locality and redundant computation due to the large size, high sparsity, and irregular non-zero distribution of real-world graphs.In this paper we propose a novel hardware accelerator for GCN inference, called I-GCN, that significantly improves data locality and reduces unnecessary computation. The mechanism is a new online graph restructuring algorithm we refer to as islandization. The proposed algorithm finds clusters of nodes with strong internal but weak external connections. The islandization process yields two major benefits. First, by processing islands rather than individual nodes, there is better on-chip data reuse and fewer off-chip memory accesses. Second, there is less redundant computation as aggregation for common/shared neighbors in an island can be reused. The parallel search, identification, and leverage of graph islands are all handled purely in hardware at runtime working in an incremental pipeline. This is done without any preprocessing of the graph data or adjustment of the GCN model structure. Experimental results show that I-GCN can significantly reduce off-chip accesses and prune 38% of aggregation operations, leading to performance speedups over CPUs, GPUs, the prior art GCN accelerators of 5549×, 403×, and 5.7× on average, respectively.
CCS CONCEPTS• Computer systems organization → Neural networks; Parallel architectures; • Computing methodologies → Parallel algorithms.
The implementation of Molecular Dynamics (MD) on FPGAs has received substantial attention. Previous work, however, has consisted of either proof-of-concept implementations of components, usually the range-limited force; full systems, but with much of the work shared by the host CPU; or prototype demonstrations, e.g., using OpenCL, that neither implement a whole system nor have competitive performance. In this paper, we present what we believe to be the first full-scale FPGA-based simulation engine, and show that its performance is competitive with a GPU (running Amber in an industrial production environment). The system features on-chip particle data storage and management, short-and long-range force evaluation, as well as bonded forces, motion update, and particle migration. Other contributions of this work include exploring numerous architectural trade-offs and analysis on various mappings schemes among particles/cells and the various on-chip compute units. The potential impact is that this system promises to be the basis for long timescale Molecular Dynamics with a commodity cluster.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.