Background: Evidence has demonstrated conditioned medium (CM) from periodontal ligament stem cells (PDLSCs) improved periodontal regeneration. Gingival mesenchymal stem cells (GMSCs) have been considered an alternative strategy for regenerative medicine. To determine whether GMSC-CM could promote periodontal wound healing, we compared the effects of GMSC-CM and PDLSC-CM on periodontal regeneration and the underlying mechanisms in rat periodontal defects. Methods: Cell-free CMs were collected from PDLSCs, GMSCs, and gingival fibroblasts (GFs) using ultracentrifugation (100-fold concentration). Periodontal defects were created on the buccal side of the first molar in the left mandible of 90 rats by a surgical method. Collagen membranes loaded with concentrated CMs (α-MEM, GF-CM, GMSC-CM, PDLSC-CM) were transplanted into periodontal defects. After 1, 2, and 4 weeks, the animals were sacrificed and specimens including the first molar and the surrounding tissues were separated and decalcified. Hematoxylin-eosin and Masson's trichrome staining were performed to evaluate periodontal regeneration. Immunohistochemical staining for tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-10 was conducted to analyze inflammation. Immunohistochemistry of BSP-II and Runx2 was performed to analyze osteoblast differentiation. Results: Histological analysis showed the amount of newly formed periodontal tissue was significantly higher in both the GMSC-CM and PDLSC-CM groups than in the other groups, with no significant difference between these two groups. At 1 and 2 weeks, the expression levels of TNF-α and IL-1β were significantly lower in the GMSC-CM and PDLSC-CM groups than in the other three groups, while there was no significant difference between these two groups. IL-10 expression was significantly higher in the GMSC-CM group than in the PDLSC-CM group and the other three groups. At 1, 2, and 4 weeks, BSP-II and Runx2 expressions were significantly higher in the GMSC-CM and PDLSC-CM groups than in the other three groups, with no significant difference between the two groups.
We propose a novel polarization-maintaining index-guiding photonic crystal fiber (PCF). It is composed of a solid silica core and a cladding with squeezed-hexagonal-lattice elliptical air holes. Using a full-vector finite-element method, we study the modal birefringence of the fundamental modes in such PCFs. Numerical result shows that very high modal birefringence with a magnitude of the order of 10(-2) around 1550 nm has been obtained. Furthermore, large normal dispersion appears over a wide range of wavelengths in both orthogonal polarizations.
Background
As the optimal source of seed cells in periodontal tissue engineering, periodontal ligament stem cells (PDLSCs) have always been researched to improve cell expansion due to their limited resource and spontaneous differentiation in vitro cultivation. Fibroblast growth factor-2 (FGF-2) has been proven to stimulate bone marrow mesenchymal stem cells (BMMSCs) proliferation and maintain their pluripotency when being added to the culture medium. As a small molecule inhibitor of transforming growth factor-beta receptors (TGF-βRs), A83-01 can also promote cell proliferation. Therefore, the aim of this study was to verify whether the combined application of FGF-2 and A83-01 could augment cell quantity and quality during in vitro culture.
Methods
PDLSCs were preconditioned with A83-01, FGF-2, or their combination. A cell counting kit-8 (CCK8) assay, cell apoptosis assay, ALP activity assay, Alizarin Red S staining assay, RT-PCR assay, Western blot assay and ELISA were used to determine the sustained effects of different preconditioning strategies on the proliferation, apoptosis, stemness, osteogenic differentiation and paracrine action of PDLSCs.
Results
The combined application of FGF-2 and A83-01 significantly augmented cell expansion, reduced cell apoptosis, magnified stemness expression, promoted later osteogenic differentiation and mineralization and increased paracrine action of PDLSCs compared with the control. Moreover, the combination presented significant advantages in enhancing proliferation, stemness expression and paracrine action over FGF-2 alone.
Conclusions
The combined application of A83-01 and FGF-2 may be an improved strategy for PDLSCs biological behavior optimization in culture expansion and advantageous for reinforcing proliferation, stemness expression and cytokine secretion over FGF-2 alone.
A novel tunable highly birefringent photonic bandgap fiber (PBGF) is designed theoretically by filling its air holes with high-index material. The transmission band can be continuously tuned by changing the refractive index of the filling material. Accordingly, the tunable modal birefringence and polarization mode dispersion of the PBGFs are investigated by adjusting the refractive index of the filling material. Furthermore, we have also analyzed the effect of surface modes in the photonic bandgap on the characteristics of the tunable PBGFs. The simulation results show the feasibility of constructing birefringence-tunable photonic crystal fibers and related fiber devices in practical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.