We
report here a mitochondria-targetable pH-sensitive probe that
allows for a quantitative measurement of mitochondrial pH changes,
as well as the real-time monitoring of pH-related physiological effects
in live cells. This system consists of a piperazine-linked naphthalimide
as a fluorescence off–on signaling unit, a cationic triphenylphosphonium
group for mitochondrial targeting, and a reactive benzyl chloride
subunit for mitochondrial fixation. It operates well in a mitochondrial
environment within whole cells and displays a desirable off–on
fluorescence response to mitochondrial acidification. Moreover, this
probe allows for the monitoring of impaired mitochondria undergoing
mitophagic elimination as the result of nutrient starvation. It thus
allows for the monitoring of the organelle-specific dynamics associated
with the conversion between physiological and pathological states.
We herein report a fluorescence probe 1 capable of detecting water-soluble oligomeric Aβ aggregates and Aβ fibrils. Upon injection into Aβ42-challenged mouse brains, probe 1 shows increased fluorescence intensity, indicating its facile binding to extracellular Aβ fibrils in brain tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.