The effects of nodulation properties of legumes on the rhizosphere bacterial community are still not clear. To determine the effects of nodulation phenotypes on bacterial communities in the rhizosphere of soybean plants, we performed high-throughput sequencing of the 16S rRNA gene to estimate the rhizosphere bacterial community of three soybean lines with different nodulation phenotypes grown in soil supplied with different levels of N fertilizer. The results revealed that both the soybean nodulation phenotypes and the N levels affected the rhizosphere bacteria community, but the nodulation phenotypes contributed more than the N-supply. The diversity of bacteria was decreased in the rhizosphere of super-nodulating phenotype. The response of rhizosphere bacterial communities to the soil available nitrogen (AN) concentrations was different than the response with the three nodulation phenotypes of soybean which was more stable in the wild-type (Nod +) soybean samples than that in the mutant samples (Nod − and Nod ++). Bradyrhizobium in the rhizosphere was positively correlated with nodule number and negatively correlated to AN in the soil, while Burkholderia and Dyella were positively correlated with nodule biomass and nitrogenase activity. These results demonstrated that the nodulation phenotype of soybean affects the rhizosphere microbiome.
The current taxonomy of the Lactiplantibacillus plantarum group comprises of 17 closely related species that are indistinguishable from each other by using commonly used 16S rRNA gene sequencing. In this study, a whole-genome-based analysis was carried out for exploring the highly distinguished target genes whose interspecific sequence identity is significantly less than those of 16S rRNA or conventional housekeeping genes. In silico analyses of 774 core genes by the cano-wgMLST_BacCompare analytics platform indicated that csbB, morA, murI, mutL, ntpJ, rutB, trmK, ydaF, and yhhX genes were the most promising candidates. Subsequently, the mutL gene was selected, and the discrimination power was further evaluated using Sanger sequencing. Among the type strains, mutL exhibited a clearly superior sequence identity (61.6–85.6%; average: 66.6%) to the 16S rRNA gene (96.7–100%; average: 98.4%) and the conventional phylogenetic marker genes (e.g., dnaJ, dnaK, pheS, recA, and rpoA), respectively, which could be used to separat tested strains into various species clusters. Consequently, species-specific primers were developed for fast and accurate identification of L. pentosus, L. argentoratensis, L. plantarum, and L. paraplantarum. During this study, one strain (BCRC 06B0048, L. pentosus) exhibited not only relatively low mutL sequence identities (97.0%) but also a low digital DNA–DNA hybridization value (78.1%) with the type strain DSM 20314T, signifying that it exhibits potential for reclassification as a novel subspecies. Our data demonstrate that mutL can be a genome-wide target for identifying and classifying the L. plantarum group species and for differentiating novel taxa from known species.
The common bean (Phaseolus vulgaris L.) is an important crop in the world that forms root nodules with diverse rhizobia. Aiming to learn the rhizobial communities associated with the common bean in the black soil of Northeast China, 79 rhizobia were isolated from root nodules of two host varieties (Cuican and Jiadouwang) grown in two sites of blackland and were characterized by comparative sequence analyses of 16S rRNA, recA, atpD, nodC, and nifH genes, and whole genome. As a result, Rhizobium indigoferae, R. anhuiense, and R. croatiense as minor groups and three dominant novel Rhizobium species were identified based on their average nucleotide identity and DNA–DNA hybridization values to the type strains of relative species. This community composition of rhizobia associated with the common bean in the tested black soils was unique. Despite their different species affiliations, all of them were identified into the symbiovar phaseoli according to the phylogenies of symbiotic genes, nodC and nifH. While the phylogenetic discrepancies found in nodC, nifH evidenced that the evolutions of nodulation (nod) and nitrogen fixation (nif ) genes were partially independent. In addition, only one dominant rhizobial species was shared by the two common bean varieties grown in the two soil samples, implying that both the plant variety and the soil characteristics affected the compatibility between rhizobia and their hosts. These findings further enlarged the spectrum of common bean-nodulating rhizobia and added more information about the interactions among the soil factors, rhizobial species, and host plants in the symbiosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.