Elesclomol is an anticancer drug that targets mitochondrial metabolism. In the past, elesclomol was recognized as an inducer of oxidative stress, but now it has also been found to suppress cancer by inducing cuproptosis. Elesclomol’s anticancer activity is determined by the dependence of cancer on mitochondrial metabolism. The mitochondrial metabolism of cancer stem cells, cancer cells resistant to platinum drugs, proteasome inhibitors, molecularly targeted drugs, and cancer cells with inhibited glycolysis was significantly enhanced. Elesclomol exhibited tremendous toxicity to all three kinds of cells. Elesclomol's toxicity to cells is highly dependent on its transport of extracellular copper ions, a process involved in cuproptosis. The discovery of cuproptosis has perfected the specific cancer suppressor mechanism of elesclomol. For some time, elesclomol failed to yield favorable results in oncology clinical trials, but its safety in clinical application was confirmed. Research progress on the relationship between elesclomol, mitochondrial metabolism and cuproptosis provides a possibility to explore the reapplication of elesclomol in the clinic. New clinical trials should selectively target cancer types with high mitochondrial metabolism and attempt to combine elesclomol with platinum, proteasome inhibitors, molecularly targeted drugs, or glycolysis inhibitors. Herein, the particular anticancer mechanism of elesclomol and its relationship with mitochondrial metabolism and cuproptosis will be presented, which may shed light on the better application of elesclomol in clinical tumor treatment.
Altered metabolism is a hallmark of cancer and presents a vulnerability that can be exploited in cancer treatment. Regulated cell death (RCD) plays a crucial role in cancer metabolic therapy. A recent study has identified a new metabolic-related RCD known as disulfidptosis. Preclinical findings suggest that metabolic therapy using glucose transporter (GLUT) inhibitors can trigger disulfidptosis and inhibit cancer growth. In this review, we summarize the specific mechanisms underlying disulfidptosis and outline potential future research directions. We also discuss the challenges that may arise in the clinical translation of disulfidptosis research.
Since the development of Sanger sequencing in 1977, sequencing technology has played a pivotal role in molecular biology research by enabling the interpretation of biological genetic codes. Today, nanopore sequencing is one of the leading third‐generation sequencing technologies. With its long reads, portability, and low cost, nanopore sequencing is widely used in various scientific fields including epidemic prevention and control, disease diagnosis, and animal and plant breeding. Despite initial concerns about high error rates, continuous innovation in sequencing platforms and algorithm analysis technology has effectively addressed its accuracy. During the coronavirus disease (COVID‐19) pandemic, nanopore sequencing played a critical role in detecting the severe acute respiratory syndrome coronavirus‐2 virus genome and containing the pandemic. However, a lack of understanding of this technology may limit its popularization and application. Nanopore sequencing is poised to become the mainstream choice for preventing and controlling COVID‐19 and future epidemics while creating value in other fields such as oncology and botany. This work introduces the contributions of nanopore sequencing during the COVID‐19 pandemic to promote public understanding and its use in emerging outbreaks worldwide. We discuss its application in microbial detection, cancer genomes, and plant genomes and summarize strategies to improve its accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.