The aim of this article is to elucidate the ideal sites for botulinum toxin injection by examining the intramuscular nerve distributions in the hamstring muscles. The hamstring muscles, biceps femoris, semitendinosus, and semimembranosus (10 specimens each) were stained by the modified Sihler method. The locations of the muscle origins, nerve entry points, and intramuscular arborized areas were recorded as percentages of the total distance from the line crossing the medial and lateral tibial condyles (0%) to the ischial tuberosity (100%). Intramuscular arborization patterns were observed at 15-30% and 50-60% for the biceps femoris, 25-40% and 60-80% for the semitendinosus, and 20-40% for the semimembranosus. This study suggests that botulinum toxin injection for spasticity of the hamstring muscles should be targeted to specific areas. These areas, where the arborization of intramuscular nerve branches is maximal, are recommended as the most effective and safest points for injection. Clin. Anat. 29:746-751, 2016. © 2016 Wiley Periodicals, Inc.
ObjectiveTo report the characteristics of myofascial trigger points (MTrPs) in the infraspinatus muscle and evaluate the therapeutic effect of trigger-point injections.MethodsMedical records of 297 patients (221 women; age, 53.9±11.3 years) with MTrPs in the infraspinatus muscle were reviewed retrospectively. Because there were 83 patients with MTrPs in both infraspinatus muscles, the characteristics of total 380 infraspinatus muscles with MTrPs (214 one side, 83 both sides) were investigated. Specific characteristics collected included chief complaint area, referred pain pattern, the number of local twitch responses, and distribution of MTrPs in the muscle. For statistical analysis, the paired t-test was used to compare a visual analogue scale (VAS) before and 2 weeks after the first injection.ResultsThe most common chief complaint area of MTrPs in the infraspinatus muscle was the scapular area. The most common pattern of referred pain was the anterolateral aspect of the arm (above the elbow). Active MTrPs were multiple rather than single in the infraspinatus muscle. MTrPs were frequently in the center of the muscle. Trigger-point injection of the infraspinatus muscle significantly decreased the pain intensity. Mean VAS score decreased significantly after the first injection compared to the baseline (7.11 vs. 3.74; p<0.001).ConclusionCharacteristics of MTrPs and the therapeutic effects of trigger-point injections of the infraspinatus muscle were assessed. These findings could provide clinicians with useful information in diagnosing and treating myofascial pain syndrome of the infraspinatus muscle.
We noticed that the original version of this paper contains typographical errors in Figs. 2 and 3.In Fig. 2 (page 275), 'With knee extraction' must be changed into 'With knee extension' . In Fig. 3 (page 276), 'With knee extraction' must be changed into 'With knee extension' .
ObjectiveTo investigate the immediate effect of a single session of whole body vibration (WBV) on lower extremity spasticity in children with cerebral palsy (CP).MethodsSeventeen children with spastic CP were included. A single session of WBV was administered: 10-minute WBV, 1-minute rest, and 10-minute WBV. The effects of WBV were clinically assessed with the Modified Ashworth Scale (MAS) and Modified Tardieu Scale (MTS) before and immediately, 30 minutes, 1 hour, 2 hours, 3 hours, and 4 hours after WBV.ResultsSpasticity of the ankle plantarflexor, as assessed by MAS and MTS scores, was reduced after WBV. Post-hoc analysis demonstrated that, compared to baseline, the MAS significantly improved for a period of 1 hour after WBV, and the R1 and R2–R1 of the MTS significantly improved for a period of 2 hours after WBV.ConclusionA single session of WBV improves spasticity of ankle plantarflexors for 1–2 hours in children with CP. Future studies are needed to test whether WBV is an effective preparation before physiotherapy and occupational therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.