Nearly monodisperse flowerlike CeO2 microspheres were synthesized via a simultaneous polymerization-precipitate reaction, metamorphic reconstruction, and mineralization under hydrothermal condition as well as subsequent calcination. The obtained CeO2 microsphere consists of 20-30 nm thick nanosheets as petals. It has an open three-dimensional (3D) porous and hollow structure and possesses high surface area, large pore volume, and marked hydrothermal stability. It can be doped easily after synthesis, and the initial 3D texture is maintained. The controlling factors and a possible formation mechanism are discussed in detail. This novel material can be used as a support for catalysts with various purposes. With CuO loaded on flowerlike CeO2, the catalytic activities and hydrothermal stability of Cu/CeO2 for ethanol stream reforming were examined. At 300 degrees C, the H2 selectivity reached a maximum value of 74.9 mol %, while CO was not detected within the precision of the gas chromatogram. It produced a hydrogen-rich gas mixture in the wide temperature range (300-500 degrees C) and showed excellent hydrothermal stability at high temperature (550 degrees C), which is a good choice for ethanol processors for hydrogen fuel cell applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.