Background The absolute number of femoral neck fractures (FNFs) is increasing; however, the prediction of traumatic femoral head necrosis remains difficult. Machine learning algorithms have the potential to be superior to traditional prediction methods for the prediction of traumatic femoral head necrosis. Objective The aim of this study is to use machine learning to construct a model for the analysis of risk factors and prediction of osteonecrosis of the femoral head (ONFH) in patients with FNF after internal fixation. Methods We retrospectively collected preoperative, intraoperative, and postoperative clinical data of patients with FNF in 4 hospitals in Shanghai and followed up the patients for more than 2.5 years. A total of 259 patients with 43 variables were included in the study. The data were randomly divided into a training set (181/259, 69.8%) and a validation set (78/259, 30.1%). External data (n=376) were obtained from a retrospective cohort study of patients with FNF in 3 other hospitals. Least absolute shrinkage and selection operator regression and the support vector machine algorithm were used for variable selection. Logistic regression, random forest, support vector machine, and eXtreme Gradient Boosting (XGBoost) were used to develop the model on the training set. The validation set was used to tune the model hyperparameters to determine the final prediction model, and the external data were used to compare and evaluate the model performance. We compared the accuracy, discrimination, and calibration of the models to identify the best machine learning algorithm for predicting ONFH. Shapley additive explanations and local interpretable model-agnostic explanations were used to determine the interpretability of the black box model. Results A total of 11 variables were selected for the models. The XGBoost model performed best on the validation set and external data. The accuracy, sensitivity, and area under the receiver operating characteristic curve of the model on the validation set were 0.987, 0.929, and 0.992, respectively. The accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve of the model on the external data were 0.907, 0.807, 0.935, and 0.933, respectively, and the log-loss was 0.279. The calibration curve demonstrated good agreement between the predicted probability and actual risk. The interpretability of the features and individual predictions were realized using the Shapley additive explanations and local interpretable model-agnostic explanations algorithms. In addition, the XGBoost model was translated into a self-made web-based risk calculator to estimate an individual’s probability of ONFH. Conclusions Machine learning performs well in predicting ONFH after internal fixation of FNF. The 6-variable XGBoost model predicted the risk of ONFH well and had good generalization ability on the external data, which can be used for the clinical prediction of ONFH after internal fixation of FNF.
Background Femoral neck fracture (FNF) accounts for approximately 3.58% of all fractures in the entire body, exhibiting an increasing trend each year. According to a survey, in 1990, the total number of hip fractures in men and women worldwide was approximately 338,000 and 917,000, respectively. In China, FNFs account for 48.22% of hip fractures. Currently, many studies have been conducted on postdischarge mortality and mortality risk in patients with FNF. However, there have been no definitive studies on in-hospital mortality or its influencing factors in patients with severe FNF admitted to the intensive care unit. Objective In this paper, 3 machine learning methods were used to construct a nosocomial death prediction model for patients admitted to intensive care units to assist clinicians in early clinical decision-making. Methods A retrospective analysis was conducted using information of a patient with FNF from the Medical Information Mart for Intensive Care III. After balancing the data set using the Synthetic Minority Oversampling Technique algorithm, patients were randomly separated into a 70% training set and a 30% testing set for the development and validation, respectively, of the prediction model. Random forest, extreme gradient boosting, and backpropagation neural network prediction models were constructed with nosocomial death as the outcome. Model performance was assessed using the area under the receiver operating characteristic curve, accuracy, precision, sensitivity, and specificity. The predictive value of the models was verified in comparison to the traditional logistic model. Results A total of 366 patients with FNFs were selected, including 48 cases (13.1%) of in-hospital death. Data from 636 patients were obtained by balancing the data set with the in-hospital death group to survival group as 1:1. The 3 machine learning models exhibited high predictive accuracy, and the area under the receiver operating characteristic curve of the random forest, extreme gradient boosting, and backpropagation neural network were 0.98, 0.97, and 0.95, respectively, all with higher predictive performance than the traditional logistic regression model. Ranking the importance of the feature variables, the top 10 feature variables that were meaningful for predicting the risk of in-hospital death of patients were the Simplified Acute Physiology Score II, lactate, creatinine, gender, vitamin D, calcium, creatine kinase, creatine kinase isoenzyme, white blood cell, and age. Conclusions Death risk assessment models constructed using machine learning have positive significance for predicting the in-hospital mortality of patients with severe disease and provide a valid basis for reducing in-hospital mortality and improving patient prognosis.
BACKGROUND Femoral neck fracture (FNF) accounts for approximately 3.58% of all fractures in the entire body, exhibiting an increasing trend each year. According to a survey, in 1990, the total number of hip fractures in men and women worldwide was approximately 338000 and 917000, respectively. In China, FNFs account for 48.22% of hip fractures.Currently, a large number of studies have been conducted on postdischarge mortality and mortality risk in patients with FNF. However, there have been no definitive studies on in-hospital mortality or its influencing factors in such patients with severe FNF admitted to the ICU. OBJECTIVE Three machine learning methods were used to construct a nosocomial death prediction model for patients admitted to intensive care units to assist clinicians in early clinical decision-making. METHODS A retrospective analysis was conducted using femoral neck fracture patient information from the Medical Information Mart for Intensive Care (MIMIC) III. After balancing the dataset using the SMOTE algorithm, patients were randomly separated into a 70% training set and a 30% testing set for the development and validation, respectively, of the prediction model. Random forest, XGBoost, and BP neural network prediction models were constructed with nosocomial death as the outcome. Model performance was assessed using the area under the receiver operating characteristic curve (AUC), accuracy, precision, sensitivity, and specificity. The predictive value of the models was verified in comparison to the traditional logistic model. RESULTS A total of 366 patients with femoral neck fractures were selected, including 48 cases of in-hospital death. Data from 636 patients were obtained by balancing the dataset with the in-hospital death group: survival group as 1:1. The three machine learning models exhibited high predictive accuracy, and the AUC of the random forest, XGBoost, and BP neural networks were 0.98, 0.97, and 0.95, respectively, all with higher predictive performance than the traditional logistic regression model. Ranking the importance of the feature variables, the top ten feature variables that were meaningful for predicting the risk of in-hospital death of patients were vitamin D, lactate, creatinine, the Simplified Acute Physiology Score(SAPS) II, calcium, loss in ICU, white blood cell, age, BMI and CK. CONCLUSIONS Death risk assessment models constructed using machine learning have positive significance for predicting the in-hospital mortality of severe patients and provide a valid basis for reducing in-hospital mortality and improving patient prognosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.