Although the video surveillance system plays an important role in intelligent transportation, the limited camera views make it difficult to observe many traffic events. In this paper, we collect and combine the traffic flow variables from the multi-source sensors, and propose a PITED method based on Random Forest (RF) and Permutation importance (PI) for traffic event detection. This model selects the suitable traffic flow variables by means of permutation arrangement of importance, and establishes the whole process of acquisition, preprocessing, quantization, modeling and evaluation. Moreover, the real traffic data are collected and tested in this paper for evaluating the experiment performance, including the miss/false rate of traffic event, and average detection time. The experimental results show that the detection rate is more than 85% and the false alarm rate is less than 3%. It means the model is effective and efficient in the practical application regardless of both workdays and holidays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.