In our previous study, we have proposed a three-stage model of emotion processing; in the current study, we investigated whether the ERP component may be different when the emotional content of stimuli is task-irrelevant. In this study, a dual-target rapid serial visual presentation (RSVP) task was used to investigate how the emotional content of words modulates the time course of neural dynamics. Participants performed the task in which affectively positive, negative, and neutral adjectives were rapidly presented while event-related potentials (ERPs) were recorded from 18 undergraduates. The N170 component was enhanced for negative words relative to positive and neutral words. This indicates that automatic processing of negative information occurred at an early perceptual processing stage. In addition, later brain potentials such as the late positive potential (LPP) were only enhanced for positive words in the 480–580-ms post-stimulus window, while a relatively large amplitude signal was elicited by positive and negative words between 580 and 680 ms. These results indicate that different types of emotional content are processed distinctly at different time windows of the LPP, which is in contrast with the results of studies on task-relevant emotional processing. More generally, these findings suggest that a negativity bias to negative words remains to be found in emotion-irrelevant tasks, and that the LPP component reflects dynamic separation of emotion valence.
The study of community detection algorithms in complex networks has been very active in the past several years. In this paper, a Hybrid Self-adaptive Community Detection Algorithm (HSCDA) based on modularity is put forward first. In HSCDA, three different crossover and two different mutation operators for community detection are designed and then combined to form a strategy pool, in which the strategies will be selected probabilistically based on statistical self-adaptive learning framework. Then, by adopting the best evolving strategy in HSCDA, a Multiobjective Community Detection Algorithm (MCDA) based on kernel k-means (KKM) and ratio cut (RC) objective functions is proposed which efficiently make use of recommendation of strategy by statistical self-adaptive learning framework, thus assisting the process of community detection. Experimental results on artificial and real networks show that the proposed algorithms achieve a better performance compared with similar state-ofthe-art approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.