Distinct metabolic programs support the differentiation of CD4(+) T cells into separate functional subsets. In this study, we investigated metabolic mechanisms underlying the differentiation of IL-9-producing CD4(+) T cells (Th9) in allergic airway inflammation and cancerous tumors. We found that histone deacetylase SIRT1 negatively regulated Th9 cell differentiation. A deficiency of SIRT1 induced by either conditional deletion in mouse CD4(+) T cells or the use of small interfering RNA (siRNA) in mouse or human T cells increased IL-9 production, whereas ectopic SIRT1 expression inhibited it. Notably, SIRT1 inhibited Th9 cell differentiation that regulated anti-tumor immunity and allergic pulmonary inflammation. Glycolytic activation through the mTOR-hypoxia-inducible factor-1α (HIF1α) was required for the differentiation of Th9 cells that conferred protection against tumors and is involved in allergic airway inflammation. Our results define the essential features of SIRT1-mTOR-HIF1α signaling-coupled glycolytic pathway in inducing Th9 cell differentiation, with implications for metabolic reprogramming as an immunotherapeutic approach.
Zika virus (ZIKV) has become a threat to global health since the outbreak in Brazil in 2015. Although ZIKV is generally considered an Aedes-transmitted pathogen, new evidence has shown that parts of the virus closely resemble Culex-transmitted viruses. Therefore, it is important to evaluate the competence of Culex species for ZIKV to understand their potential as vectors. In this study, female Culex pipiens quinquefasciatus were orally exposed to ZIKV. Mosquito midguts, salivary glands and ovaries were tested for ZIKV to measure infection and dissemination at 2, 4, 6, 8, 12, 16 and 18 days post exposure (pe). In addition, saliva was collected from mosquitoes after infection and infant mice were bitten by infected mosquitoes to measure the transmission ability of Cx. p. quinquefasciatus. The results showed that the peak time of virus appearance in the salivary glands was day 8 pe, with 90% infection rate and an estimated virus titer of 3.92±0.49 lg RNA copies/mL. Eight of the nine infant mice had positive brains after being bitten by infected mosquitoes, which meant that Cx. p. quinquefasciatus could be infected with and transmit ZIKV following oral infection. These laboratory results clearly demonstrate the potential role of Cx. p. quinquefasciatus as a vector of ZIKV in China. Because there are quite different vector management strategies required to control Aedes (Stegomyia) species and Cx. p. quinquefasciatus, an integrated approach may be required should a Zika epidemic occur.
Mosquitoes are insects of the Diptera, Nematocera, and Culicidae families, some species of which are important disease vectors. Identifying mosquito species based on morphological characteristics is difficult, particularly the identification of specimens collected in the field as part of disease surveillance programs. Because of this difficulty, we constructed DNA barcodes of the cytochrome c oxidase subunit 1, the COI gene, for the more common mosquito species in China, including the major disease vectors. A total of 404 mosquito specimens were collected and assigned to 15 genera and 122 species and subspecies on the basis of morphological characteristics. Individuals of the same species grouped closely together in a Neighborhood-Joining tree based on COI sequence similarity, regardless of collection site. COI gene sequence divergence was approximately 30 times higher for species in the same genus than for members of the same species. Divergence in over 98% of congeneric species ranged from 2.3% to 21.8%, whereas divergence in conspecific individuals ranged from 0% to 1.67%. Cryptic species may be common and a few pseudogenes were detected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.