Good surface water quality is critical to human health and ecology. Land use determines the surface water heat and material balance, which cause climate change and affect water quality. There are many factors affecting water quality degradation, and the process of influence is complex. As rivers, lakes, and other water bodies are used as environmental receiving carriers, evaluating and quantifying how impacts occur between land use types and surface water quality is extremely important. Based on the summary of published studies, we can see that (1) land use for agricultural and construction has a negative impact on surface water quality, while woodland use has a certain degree of improvement on surface water quality; (2) statistical methods used in relevant research mainly include correlation analysis, regression analysis, redundancy analysis, etc. Different methods have their own advantages and limitations; (3) in recent years, remote sensing monitoring technology has developed rapidly, and has developed into an effective tool for comprehensive water quality assessment and management. However, the increase in spatial resolution of remote sensing data has been accompanied by a surge in data volume, which has caused difficulties in information interpretation and other aspects.
The variability in the quality of water that runs along the course of a river, flowing out of a mountain pass, through an agricultural oasis and into a lake, has been a key topic of research in recent years. In this study, the characteristics of dissolved organic matter (DOM) along the river flow, and its relationship with water quality, were analyzed using the Canadian water quality index (CWQI), parallel factor (PARAFAC) and self-organizing map (SOM). The study results include: (1) The conclusion of field sampling along the lower reaches of the Kaidu River and laboratory measurements of water quality parameters, using CWQI to determine the water quality index of the lower Kaidu River, ranging between 59.58 and 93.47. The water quality of the lower reaches of the Kaidu River generally ranges between moderate and good, and can meet the water use requirements of Class II water function standards. (2) The DOM composition of the river predominantly contained three fluorescence components, while the three fluorescence indices of the water body varied less in different river sections. Based on the SOM training model, the fluorescence intensity of the C1 component was larger among the three fluorescence components, followed by the C2 component, and the smallest fluorescence intensity of the C3, which was dominated by humic-like substances, with a high authigenic origin and humification degree. (3) The fluorescence index and fluorescence components were correlated with water quality parameters, and it was found that C1, C2 and C3 were negative and correlated significantly with SO42- and Total-dissolved solids (TDS) concentrations; FI, HIX and BIX showed strong positive correlations with SAL and Cu and negative correlations with dissolved oxygen (DO). This study provides a scientific basis for surface water quality monitoring and water quality pollution management in the Kaidu River.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.