Soy protein isolate was hydrolysed with Alcalase, Papain, Flavorzyme and Protemax, respectively, and further fractioned by ultrafiltration. The resulting soy protein hydrolysates (SPH) and their ultrafiltration fractions were used to examine their effects on the growth and fermentation performances of brewer's yeast. Results showed that degree of hydrolysis, molecular weight distribution and amino acid composition of SPH significantly affected the growth, viability and fermentation performance of brewer's yeast. The SPH prepared from different proteolytic enzymes exhibited distinct growth-and fermentation-promoting activity for brewer's yeast. The SPH treated with Protemax for 9 h and with the molecular weight below 3 kDa showed the highest growth-promoting activity and induced more rapidly reducing sugar consumption and higher ethanol production. The relatively lower molecular weight and the hydrophilic and electropositive amino acid residues (Lys, His, Arg and Ile) in SPH might be responsible for its functionality, promoting the growth and fermentation of brewer's yeast.
The changes in the proton efflux rate (PER) during fermentation of normal gravity (NG), high gravity (HG) and very high gravity (VHG) wort by a lager yeast (Saccharomyces pastorianus) were monitored using an optimized PER test method. The values of the proton efflux rate in S. pastorianus decreased with increasing initial wort gravity. Moreover, the difference in the proton efflux rate values at the beginning of the fermentation was lower than at the end of fermentation from normal gravity to very high gravity brewing. These results demonstrated that the proton efflux rate in S. pastorianus was inhibited in the later stages of high gravity and very high gravity brewing. Furthermore, the changes of the proton efflux rate in S. pastorianus under the high ethanol concentration conditions appeared to depend on the concentration of ethanol in the fermentation liquid. A better negative correlation (P < 0.001, r = -0.95) between the ethanol concentration at >4% (w/v) and the proton efflux rate was found. The changes of the proton efflux rate in the cells treated with exogenous ethanol confirmed that higher concentrations of ethanol could significantly inhibit proton efflux in S. pastorianus. This study offers a possible way to monitor and explain the performance of yeast in the complex environment of high gravity and very high gravity brewing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.