<p style='text-indent:20px;'>We prove a global <inline-formula><tex-math id="M1">\begin{document}$ W^{2, p} $\end{document}</tex-math></inline-formula>-estimate for the viscosity solution to fully nonlinear elliptic equations <inline-formula><tex-math id="M2">\begin{document}$ F(x, u, Du, D^{2}u) = f(x) $\end{document}</tex-math></inline-formula> with oblique boundary condition in a bounded <inline-formula><tex-math id="M3">\begin{document}$ C^{2, \alpha} $\end{document}</tex-math></inline-formula>-domain for every <inline-formula><tex-math id="M4">\begin{document}$ \alpha\in (0, 1) $\end{document}</tex-math></inline-formula>. Here, the nonlinearities <inline-formula><tex-math id="M5">\begin{document}$ F $\end{document}</tex-math></inline-formula> is assumed to be asymptotically <inline-formula><tex-math id="M6">\begin{document}$ \delta $\end{document}</tex-math></inline-formula>-regular to an operator <inline-formula><tex-math id="M7">\begin{document}$ G $\end{document}</tex-math></inline-formula> that is <inline-formula><tex-math id="M8">\begin{document}$ (\delta, R) $\end{document}</tex-math></inline-formula>-vanishing with respect to <inline-formula><tex-math id="M9">\begin{document}$ x $\end{document}</tex-math></inline-formula>. We employ the approach of constructing a regular problem by an appropriate transformation. With a similar argument, we also obtain a global <inline-formula><tex-math id="M10">\begin{document}$ W^{2, p} $\end{document}</tex-math></inline-formula>-estimate for the viscosity solution to fully nonlinear parabolic equations <inline-formula><tex-math id="M11">\begin{document}$ F(x, t, u, Du, D^{2}u)-u_{t} = f(x, t) $\end{document}</tex-math></inline-formula> with oblique boundary condition in a bounded <inline-formula><tex-math id="M12">\begin{document}$ C^{3} $\end{document}</tex-math></inline-formula>-domain.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.