Human adipose-derived stem cells are used in regenerative medicine for treating various diseases including osteoarthritis, degenerative arthritis, cartilage or tendon injury, etc. However, their use in neurological disorders is limited, probably due to the lack of a quick and efficient induction method of transforming these cells into neural stem or progenitor cells. In this study, we reported a highly efficient and simple method to induce adipose-derived stem cells into neural progenitor cells within 12 hours, using serum-free culture combined with a well-defined induction medium (epidermal growth factor 20 ng/ml and basic fibroblast growth factor, both at 20 ng/ml, with N2 and B27 supplements). These adipose-derived stem cell-derived neural progenitor cells grow as neurospheres, can self-renew to form secondary neurospheres, and can be induced to become neurons and glial cells. Real-time polymerase chain reaction showed significantly upregulated expression of neurogenic genes Sox2 and Nestin with a moderate increase in stemness gene expression. Raybio human growth factor analysis showed a significantly upregulated expression of multiple neurogenic and angiogenic cytokines such as brain-derived neurotrophic factor, glial cell line-derived neurotrophic growth factor, nerve growth factor, basic fibroblast growth factor and vascular endothelial growth factor etc. Therefore, adipose-derived stem cell-derived neurospheres can be a new source of neural progenitor cells and hold great potential for future cell replacement therapy for treatment of various refractory neurological diseases.
Cell therapy has emerged as a promising strategy for treating neurological diseases such as stroke, spinal cord injury, and various neurodegenerative diseases, but both embryonic neural stem cells and human induced Pluripotent Stem Cell- (iPSC-) derived neural stem cells have major limitations which restrict their broad use in these diseases. We want to find a one-step induction method to transdifferentiate the more easily accessible Umbilical Cord-Derived Mesenchymal Stem Cells (UC-MSCs) into neural stem/progenitor cells suitable for cell therapy purposes. In this study, UC-MSCs were induced to form neurospheres under a serum-free suspension culture with Epidermal Growth Factor- (EGF-) and basic Fibroblast Growth Factor- (bFGF-) containing medium within 12 hours. These MSC-derived neurospheres can self-renew to form secondary neurospheres and can be readily induced to become neurons and glial cells. Real-time PCR showed significantly upregulated expression of multiple stemness and neurogenic genes after induction. RNA transcriptional profiling study showed that UC-MSC-derived neurospheres had a unique transcriptional profile of their own, with features of both UC-MSCs and neural stem cells. RayBio human growth factor cytokine array analysis showed significantly upregulated expression levels of multiple neurogenic and angiogenic growth factors, skewing toward a neural stem cell phenotype. Thus, we believe that these UC-MSC-derived neurospheres have amenable features of both MSCs and neural stem/progenitor cells and have great potential in future stem cell transplantation clinical trials targeting neurological disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.