Despite the increased research efforts, full-scale implementation of shortcut nitrogen removal strategies has been challenged by the lack of consistent nitrite-oxidizing bacteria out-selection. This paper proposes an alternative path using partial denitrification (PdN) selection coupled with anaerobic ammonium-oxidizing bacteria (AnAOB). A nitrate residual concentration (>2 mg N/L) was identified as the crucial factor for metabolic PdN selection using acetate as a carbon source, unlike the COD/N ratio which was often suggested. Therefore, a novel and simple acetate dosing control strategy based on maintaining a nitrate concentration was tested in the absence and presence of AnAOB, achieving PdN efficiencies above 80%. The metabolic-based PdN selection allowed for flexibility to move between PdN and full denitrification when required to meet effluent nitrate levels. Due to the independence of this strategy on species selection and management of nitrite competition, this novel approach will guarantee nitrite availability for AnAOB under mainstream conditions unlike shortcut nitrogen removal approaches based on NOB out-selection. Overall, a COD addition of only 2.2 g COD/g TIN removed was needed for the PdN-AnAOB concept showing its potential for significant savings in external carbon source needs to meet low TIN effluent concentrations making this concept a competitive alternative.
• Practitioner points• Nitrate residual is the key control parameter for partial denitrification selection. • Metabolic selection allowed for flexibility of moving from partial to full denitrification. • 2.2 g COD/g TIN removed was needed for partial denitrification-anammox process.
The thermal hydrolysis process (THP) has been proven to be an excellent pretreatment step for an anaerobic digester (AD), increasing biogas yield and decreasing sludge disposal. The goal of this work was to optimize deammonification for efficient nitrogen removal despite the inhibition effects caused by the organics present in the THP-AD sludge filtrate (digestate). Two sequencing batch reactors were studied treating conventional digestate and THP-AD digestate, respectively. Improved process control based on higher dissolved oxygen set-point (1 mg O2/L) and longer aeration times could achieve successful treatment of THP-AD digestate. This increased set-point could overcome the inhibition effect on aerobic ammonium-oxidizing bacteria (AerAOB), potentially caused by particulate and colloidal organics. Moreover, based on the mass balance, anoxic ammonium-oxidizing bacteria (AnAOB) contribution to the total nitrogen removal decreased from 97 ± 1 % for conventional to 72 ± 5 % for THP-AD digestate treatment, but remained stable by selective AnAOB retention using a vibrating screen. Overall, similar total nitrogen removal rates of 520 ± 28 mg N/L/day at a loading rate of 600 mg N/L/day were achieved in the THP-AD reactor compared to the conventional digestate treatment operating at low dissolved oxygen (DO) (0.38 ± 0.10 mg O2/L).
This study examined the cell growth rate, lipid contents, lipid productivity, chlorophyll a concentration, and carbon dioxide tolerance of Chlorella vulgaris under various cultivation conditions. The pH, concentration of carbon dioxide in media, and light intensity variables were manipulated to obtain high lipid productivity. The optimum conditions were at pH 7.0, 2,930 lux, and 30 % carbon dioxide. Biomass concentration reached 1,288, 1,130, and 1,083 mg L -1 at 15, 30, and 50 % CO 2 after 6 days, respectively, implying that this strain has appreciable tolerance to carbon dioxide. The highest concentration of chlorophyll a occurred at 2,930 lux and decreased with increasing light intensity gradually. The maximum specific growth rate was 3.25 day -1 based on the dry weight and 4.63 day -1 based on the cell number. The lipid content (45.68 %) and lipid productivity (86.03 mg day -1 L -1 ) obtained in this study are higher than reported values in literatures. Hence, C. vulgaris is a good candidate for subsequent research in biodiesel production under elevated carbon dioxide concentration by microalgae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.