Various human disorders are associated with misdistribution of iron within or across cells. Friedreich ataxia (FRDA), a deficiency in the mitochondrial ironchaperone frataxin, results in defective use of iron and its misdistribution between mitochondria and cytosol. We assessed the possibility of functionally correcting the cellular properties affected by frataxin deficiency with a siderophore capable of relocating iron and facilitating its metabolic use. Adding the chelator deferiprone at clinical concentrations to inducibly frataxin-deficient HEK-293 cells resulted in chelation of mitochondrial labile iron involved in oxidative stress and in reactivation of iron-depleted aconitase. These led to (1) restoration of impaired mitochondrial membrane and redox potentials, (2) increased adenosine triphosphate production and oxygen consumption, and (3) attenuation of mitochondrial DNA damage and reversal of hypersensitivity to staurosporine-induced apoptosis. Permeant chelators of higher affinity than deferiprone were not as efficient in restoring affected functions. Thus, although iron chelation might protect cells from iron toxicity, rendering the chelated iron bioavailable might underlie the capacity of deferiprone to restore cell functions affected by frataxin deficiency, as also observed in FRDA patients. The siderophore-like properties of deferiprone provide a rational basis for treating diseases of iron misdistribution, such as FRDA, anemia of chronic disease, and X-linked sideroblastic anemia with ataxia. IntroductionHumoral factors or mutations of genes that affect iron metabolism often result in pathologic changes linked to systemic or cellular misdistribution of iron. In anemia of chronic disease (ACD), 1 plasma iron deficiency results from retention of iron in the reticuloendothelial system because of hepcidin-mediated inhibition of iron export into plasma. 2 Defective delivery and distribution of iron resulting from deficiency in the iron-chaperone protein frataxin are also considered to be key causative factors in Friedreich ataxia (FRDA). 3,4 The disease is expressed in individuals carrying a GAA repeat expansion in the first intron of frataxin that reduces frataxin levels, leading to reduced iron-sulfur cluster (ISC)-protein (ISP) synthesis and a combined deficiency in aconitase and respiratory chain (complex I-III) activity. This leads to a concomitant deficiency in cell respiratory functions 5 that is further exacerbated by mitochondrial iron accumulation and ensuing oxidative damage. 6,7 FRDA is a neurodegenerative disorder that is often accompanied by hypertrophic cardiomyopathy and increased predisposition for diabetes mellitus. 8 The precise role of iron in FRDA pathophysiology has hitherto remained controversial. 9 Support for its direct involvement in the disease is based on histopathologic examination of human specimens and magnetic resonance imaging of patients. 10 Similar conclusions were drawn from biochemical studies with frataxin-deficient yeast and animal cell models. 11 The contending ...
Frataxin protein deficiency causes the neurodegenerative disease Friedreich ataxia. We used inducible siRNA to order the consequences of frataxin deficiency that we and others have previously observed. The earliest consequence of frataxin deficiency was a defect in cytoplasmic iron-sulfur proteins. In the second phase, protein oxidative damage increased, and CuZnSOD was induced, as was the unfolded protein response (UPR), long before any decline in mitochondrial aconitase activity. In the third phase, mitochondrial aconitase activity declined. And in the fourth phase, coincident with the decrease in heme-containing cytochrome c protein, a transcriptional induction of the heme-dependent transcripts ALAS1 and MAOA occurred. These observations suggest that the earliest consequences of frataxin deficiency occur in ISC proteins of the cytoplasm, resulting in oxidative damage and stress and activation of the unfolded protein response which has been associated with neurological disease, and that later consequences involve mitochondrial iron-sulfur cluster deficiency, heme deficiency, and then increased heme biosynthesis.
Summary Mutations in the frataxin gene cause dorsal root ganglion demyelination and neurodegeneration, which leads to Friedreich’s ataxia. However the consequences of frataxin depletion have not been measured in dorsal root ganglia or Schwann cells. We knocked down frataxin in several neural cell lines, including two dorsal root ganglia neural lines, 2 neuronal lines, a human oligodendroglial line (HOG) and multiple Schwann cell lines and measured cell death and proliferation. Only Schwann cells demonstrated a significant decrease in viability. In addition to the death of Schwann cells, frataxin decreased proliferation in Schwann, oligodendroglia, and slightly in one neural cell line. Thus the most severe effects of frataxin-deficiency were on Schwann cells, which enwrap dorsal root ganglia neurons. Microarray of frataxin-deficient Schwann cells demonstrated strong activations of inflammatory and cell death genes including interleukin-6 and Tumor Necrosis Factor which were confirmed at the mRNA and protein levels. Frataxin knockdown in Schwann cells also specifically induced inflammatory arachidonate metabolites. Anti-inflammatory and anti-apoptotic drugs significantly rescued frataxin-dependent Schwann cell toxicity. Thus, frataxin deficiency triggers inflammatory changes and death of Schwann cells that is inhibitable by inflammatory and anti-apoptotic drugs.
Recently, two distinct cDNA clones encoding the catalytic subunit of the vacuolar H(+)-ATPase (V-ATPase) were isolated from the allotetraploid cotton species Gossypium hirsutum L. cv 'Acala SJ-2' (Wilkins 1992, 1993). Differences in the nucleotide sequence of these clones were used as molecular markers to explore the organization and structure of the V-ATPase catalytic subunit genes in the A and D genomes of diploid and allotetraploid cotton species. Nucleotide sequencing of polymerase chain reaction (PCR) products amplified from G. arboreum (A2, 2n=26), G. raimondii (D5, 2n=26), and G. hirsutum cv 'Acala SJ-2' [(AD)1, 2n=4x=52] revealed a V-ATPase catalytic subunit organization more complex than indicated hitherto in any species, including higher plants. In the genus Gossypium, the V-ATPase catalytic subunit genes are organized as a superfamily comprising two diverse but closely related multigene families, designated as vat69A and vat69B, present in both diploid and allotetraploid species. As expected, each vat69 subfamily is correspondingly more complex in the allotetraploid species due to the presence of both A and D alloalleles. Because of this, about one-half of the complex organization of V-ATPase catalytic subunit genes predates polyploidization and speciation of New World tetraploid species. Comparison of plant and fungal V-ATPase catalytic subunit gene structure indicates that introns accrued in the plant homologs following the bifurcation of plant and fungi but prior to the gene duplication event that gave rise to the vat69A and vat69B genes approximately 45 million years ago. The structural complexity of plant V-ATPase catalytic subunit genes is highly conserved, indicating the presence of at least ten introns dispersed throughout the coding region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.