N-ethyl-2-pyrrolidinone-substituted flavan-3-ols (EPSFs) were prepared by an in vitro model reaction, and the taste thresholds of EPSFs and their dose-over-threshold factors in large-leaf yellow tea (LYT) were investigated. The effects of initial reactant ratios, reaction temperatures and time, pH values, and water addition on the yield of EPSFs were explored. The contents of EPSFs during roasting were determined by liquid chromatography quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS). When the initial ratio of (−)-epigallocatechin gallate (EGCG) to theanine was 1:2 and roasted under 120 °C for 120 min, the contents of EPSFs were the highest. The bitterness and astringency thresholds of four EPSF isomers were measured by the halftongue method, of which EPSF2 and EPSF3 had higher thresholds than EGCG. In LYT, four EPSFs had lower bitterness and astringency dose-over-threshold factors than EGCG. This study suggested that the reduction of bitterness and astringency of tea after roasting may be mainly due to the formation of EPSFs.
During tea processing, roasting significantly affects the transformation pathway of catechins. When (−)-epigallocatechin gallate (EGCG) and glucose were roasted at different pH values, the degree of degradation and isomerization of EGCG was the lowest at pH 7 and the highest at pH 8. Thirty-five products were found in the model reaction of EGCG and glucose under high temperatures, of which four EGCG−glucose adducts were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and nuclear magnetic resonance (NMR). In addition, catechins, gallic acid, and theanine in tea with added glucose were significantly reduced during roasting. The contents of four EGCG−glucose adducts were increased significantly at 150 °C after 30 min and dropped gradually after 60 min. Therefore, based on the present study, EGCG could form crosslinks with glucose under high temperatures in a short time, which provides insight for tea processing and synthesis of catechin−sugar adducts.
Amadori
rearrangement products (ARPs) derived from the Maillard
reaction between theanine and glucose (ARP 1), as well as pyroglutamic
acid and glucose (ARP 2), were identified by liquid chromatograph
tandem mass spectroscopy methods. The effects of initial reactant
ratio, temperature, pH, and heating time on ARP generation were analyzed.
The formation of both ARPs was most favored under 100 °C, while
an alkaline environment slightly promoted the generation of ARP 1
and acidic conditions contributed more to ARP 2 formation. The decomposition
of ARP 1 was suggested to be the predominant formation mechanism of
ARP 2. Preparation, purification, and structure identification of
ARP 1 were conducted, with its structure confirmed as 1-deoxy-1-l-theanino-d-fructose. The contents of ARP 1 in green,
black, dark, white, yellow, and Oolong teas were quantitatively determined,
of which black teas contained the highest levels of ARP 1, possibly
due to the high glucose content and processing techniques.
Four di-N-ethyl-2-pyrrolidinone-substituted epigallocatechin gallate (EGCG) and two di-N-ethyl-2-pyrrolidinonesubstituted gallocatechin gallate (GCG) flavan-3-ols (di-EPSFs) were prepared by the thermal simulation reaction. The effects of reaction temperature and time, initial reactant ratios, and pH values on the content of di-EPSFs were studied. The formation of six di-EPSFs was most favored when the initial reactant ratio of EGCG and theanine was 1:2 and heated under 130 °C at pH 10 for 120 min. The contents of di-EPSF1, di-EPSF2, and di-EPSF5 in large-leaf yellow tea (LYT) increased with the increase of roasting degree. Through quantitative analysis, it was found that EGCG would interact with the Strecker degradation products of theanine to form EPSFs, which further combined with the Strecker degradation products of theanine to form di-EPSFs. This study further improved the understanding of the transformation pathways of EGCG and theanine during tea processing and contributed to exploring the flavor characteristics and health benefits of di-EPSFs.
Qingzhuan tea (QZT) is a typical Chinese dark tea that has a long-time manufacturing process. In the present study, liquid chromatography coupled with tandem mass spectrometry was used to study the chemical changes of tea samples during QZT processing. Untargeted metabolomics analysis revealed that the pile-fermentation and turnover (post-fermentation, FT) was the crucial stage in transforming the main compounds of QZT, whose contents of flavan-3-ols and flavonoids glycosides were decreased significantly. The bioactivities, including the antioxidant capacities and inhibitory effects on α-amylase and α-glucosidase, were also reduced after the FT process. It was suggested that although the QZT sensory properties improved following pile-fermentation and aging, the bioactivities remained restrained. Correlation analysis indicated that the main galloylated catechins and flavonoid glycosides were highly related to their antioxidant capacity and inhibitory effects on α-amylase and α-glucosidase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.