Researchers have made crucial advances in understanding the pathogenesis and therapeutics of non-small cell lung cancer (NSCLC), improving our understanding of lung tumor biology and progression. Although the survival of NSCLC patients has improved due to chemoradiotherapy, targeted therapy, and immunotherapy, overall NSCLC recovery and survival rates remain low. Thus, there is an urgent need for the continued development of novel NSCLC drugs or combination therapies with less toxicity. Although the anticancer effectiveness of curcumin (Cur) and some Cur analogs has been reported in many studies, the results of clinical trials have been inconsistent. Therefore, in this review, we collected the latest related reports about the anti-NSCLC mechanisms of Cur, its analogs, and Cur in combination with other chemotherapeutic agents via the Pubmed database (accessed on 18 June 2022). Furthermore, we speculated on the interplay of Cur and various molecular targets relevant to NSCLC with discovery studio and collected clinical trials of Cur against NSCLC to clarify the role of Cur and its analogs in NSCLC treatment. Despite their challenges, Cur/Cur analogs may serve as promising therapeutic agents or adjuvants for lung carcinoma treatment.
<b><i>Background:</i></b> The pathobiology of diabetes and associated complications has been widely researched in various countries, but effective prevention and treatment methods are still insufficient. Diabetes is a metabolic disorder of carbohydrates, fats, and proteins caused by an absence of insulin or insulin resistance, which mediates an increase of oxidative stress, release of inflammatory factors, and macro- or micro-circulation dysfunctions, ultimately developing into diverse complications. <b><i>Summary:</i></b> In the last decade through pathogenesis research, epigenetics has been found to affect metabolic diseases. Particularly, DNA methylation, histone acetylation, and miRNAs promote or inhibit diabetes and complications by regulating the expression of related factors. Curcumin has a wide range of beneficial pharmacological activities, including anti-inflammatory, anti-oxidation, anticancer, anti-diabetes, anti-rheumatism, and increased immunity. <b><i>Key Messages:</i></b> In this review, we discuss the effects of curcumin and analogs on diabetes and associated complications through epigenetics, and we summarize the preclinical and clinical researches for curcumin and its analogs in terms of management of diabetes and associated complications, which may provide an insight into the development of targeted therapy of endocrine diseases.
In this study, rat and human 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) have been cloned by lentiviral transduction and expressed by CHO-K1 cells. The results showed that recombinant plasmids contained R11bhsd1 or H11bhsd1 have been constructed, which is consistent with the gene bank respectively. A clone cell was selected with G418 and cultivated to express 11β-HSD1. 11β-HSD1 catalytic activity of rat and human were 99.5 and 98.7%, respectively, determined by scanning radiometer. And the cloned CHO-K1 cells expressed the protein of 11β-HSD1 in a long-term and stable manner, which makes it suitable for screening 11β-HSD1 inhibitor. The three-dimensional structure of 11β-HSD1 was used for studying the interaction between inhibitor and enzyme by the binding poses predicted by AutoDock and LeDock software. The docking results revealed that compound 8 forms 2 hydrogen bonds with the residues of Gly-216 and Ile-218 in 11β-HSD1, that is to say compound 8 maybe a good 11β-HSD1 inhibitor. Moreover, C57BL/6 mice with R11bHsd1 overexpression had a higher body weight, glucose, total cholesterol, and triglyceride levels compared to the mice treated with an empty viral vector. The results might provide a beneficial foundation for selecting inhibitors of 11β-HSD1 or for researching drug candidate mechanisms.
Excessive accumulation of the extracellular matrix (ECM) is a crucial pathological process in chronic kidney diseases, such as diabetic nephropathy, etc. The underlying mechanisms of how to decrease ECM deposition to improve diabetic nephropathy remain elusive. The present study investigated whether cyclopentanone compound H8 alleviated ECM over-deposition and fibrosis to prevent and treat diabetic nephropathy. HK-2 cell viability after treatment with H8 was measured by an MTT assay. ECM alterations and renal fibrosis were identified in vitro and in vivo. A pharmacological antagonist was used to detect associations between H8 and the p38 mitogen-activated protein kinase (p38MAPK) signaling pathway. H8 binding was identified through computer simulation methods. Studies conducted on high glucose and transforming growth factor β1 (TGF-β1)-stimulated HK-2 cells revealed that the p38MAPK inhibitor SB 202190 and H8 had similar pharmacological effects. In addition, excessive ECM accumulation and fibrosis in diabetic nephropathy were remarkably improved after H8 administration in vivo and in vitro. Finally, the two molecular docking models further proved that H8 is a specific p38MAPK inhibitor that forms a hydrogen bond with the LYS-53 residue of p38MAPK. The cyclopentanone compound H8 alleviated the over-deposition of ECM and the development of fibrosis in diabetic nephropathy by suppressing the TGF-β/p38MAPK axis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.