To better understand the behavior of attackers and describe the network state, we construct an LSTM-DT model for network security situation awareness, which provides risk assessment indicators and quantitative methods. This paper introduces the concept of attack probability, making prediction results more consistent with the actual network situation. The model is focused on the problem of the time sequence of network security situation assessment by using the decision tree algorithm (DT) and long short-term memory(LSTM) network. The biggest innovation of this paper is to change the description of the network situation in the original dataset. The original label only has attack and normal. We put forward a new idea which regards attack as a possibility, obtaining the probability of each attack, and describing the network situation by combining the occurrence probability and attack impact. Firstly, we determine the network risk assessment indicators through the dataset feature distribution, and we give the network risk assessment index a corresponding weight based on the analytic hierarchy process (AHP). Then, the stack sparse auto-encoder (SSAE) is used to learn the characteristics of the original dataset. The attack probability can be predicted by the processed dataset by using the LSTM network. At the same time, the DT algorithm is applied to identify attack types. Finally, we draw the corresponding curve according to the network security situation value at each time. Experiments show that the accuracy of the network situation awareness method proposed in this paper can reach 95%, and the accuracy of attack recognition can reach 87%. Compared with the former research results, the effect is better in describing complex network environment problems.
In recent years, network traffic contains a lot of feature information. If there are too many redundant features, the computational cost of the algorithm will be greatly increased. This paper proposes an anomalous network traffic detection method based on Elevated Harris Hawks optimization. This method is easier to identify redundant features in anomalous network traffic, reduces computational overhead, and improves the performance of anomalous traffic detection methods. By enhancing the random jump distance function, escape energy function, and designing a unique fitness function, there is a unique anomalous traffic detection method built using the algorithm and the neural network for anomalous traffic detection. This method is tested on three public network traffic datasets, namely the UNSW-NB15, NSL-KDD, and CICIDS2018. The experimental results show that the proposed method does not only significantly reduce the number of features in the dataset and computational overhead, but also gives better indicators for every test.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.